Metamath Proof Explorer


Theorem ustn0

Description: The empty set is not an uniform structure. (Contributed by Thierry Arnoux, 3-Dec-2017)

Ref Expression
Assertion ustn0 ¬ranUnifOn

Proof

Step Hyp Ref Expression
1 noel ¬x×x
2 0ex V
3 eleq2 u=x×xux×x
4 2 3 elab u|x×xux×x
5 1 4 mtbir ¬u|x×xu
6 vex xV
7 velpw u𝒫𝒫x×xu𝒫x×x
8 7 abbii u|u𝒫𝒫x×x=u|u𝒫x×x
9 abid2 u|u𝒫𝒫x×x=𝒫𝒫x×x
10 6 6 xpex x×xV
11 10 pwex 𝒫x×xV
12 11 pwex 𝒫𝒫x×xV
13 9 12 eqeltri u|u𝒫𝒫x×xV
14 8 13 eqeltrri u|u𝒫x×xV
15 simp1 u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwvu𝒫x×x
16 15 ss2abi u|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwvu|u𝒫x×x
17 14 16 ssexi u|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwvV
18 df-ust UnifOn=xVu|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwv
19 18 fvmpt2 xVu|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwvVUnifOnx=u|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwv
20 6 17 19 mp2an UnifOnx=u|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwv
21 simp2 u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwvx×xu
22 21 ss2abi u|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwvu|x×xu
23 20 22 eqsstri UnifOnxu|x×xu
24 23 sseli UnifOnxu|x×xu
25 5 24 mto ¬UnifOnx
26 25 nex ¬xUnifOnx
27 18 funmpt2 FunUnifOn
28 elunirn FunUnifOnranUnifOnxdomUnifOnUnifOnx
29 27 28 ax-mp ranUnifOnxdomUnifOnUnifOnx
30 ustfn UnifOnFnV
31 fndm UnifOnFnVdomUnifOn=V
32 30 31 ax-mp domUnifOn=V
33 32 rexeqi xdomUnifOnUnifOnxxVUnifOnx
34 rexv xVUnifOnxxUnifOnx
35 29 33 34 3bitri ranUnifOnxUnifOnx
36 26 35 mtbir ¬ranUnifOn