Description: The empty set is not an uniform structure. (Contributed by Thierry Arnoux, 3-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | ustn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel | |
|
2 | 0ex | |
|
3 | eleq2 | |
|
4 | 2 3 | elab | |
5 | 1 4 | mtbir | |
6 | vex | |
|
7 | velpw | |
|
8 | 7 | abbii | |
9 | abid2 | |
|
10 | 6 6 | xpex | |
11 | 10 | pwex | |
12 | 11 | pwex | |
13 | 9 12 | eqeltri | |
14 | 8 13 | eqeltrri | |
15 | simp1 | |
|
16 | 15 | ss2abi | |
17 | 14 16 | ssexi | |
18 | df-ust | |
|
19 | 18 | fvmpt2 | |
20 | 6 17 19 | mp2an | |
21 | simp2 | |
|
22 | 21 | ss2abi | |
23 | 20 22 | eqsstri | |
24 | 23 | sseli | |
25 | 5 24 | mto | |
26 | 25 | nex | |
27 | 18 | funmpt2 | |
28 | elunirn | |
|
29 | 27 28 | ax-mp | |
30 | ustfn | |
|
31 | fndm | |
|
32 | 30 31 | ax-mp | |
33 | 32 | rexeqi | |
34 | rexv | |
|
35 | 29 33 34 | 3bitri | |
36 | 26 35 | mtbir | |