Description: Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014) (Revised by Mario Carneiro, 21-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uzsupss.1 | |
|
Assertion | uzsupss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzsupss.1 | |
|
2 | simpl1 | |
|
3 | uzid | |
|
4 | 2 3 | syl | |
5 | 4 1 | eleqtrrdi | |
6 | ral0 | |
|
7 | simpr | |
|
8 | 7 | raleqdv | |
9 | 6 8 | mpbiri | |
10 | eluzle | |
|
11 | eluzel2 | |
|
12 | eluzelz | |
|
13 | zre | |
|
14 | zre | |
|
15 | lenlt | |
|
16 | 13 14 15 | syl2an | |
17 | 11 12 16 | syl2anc | |
18 | 10 17 | mpbid | |
19 | 18 1 | eleq2s | |
20 | 19 | pm2.21d | |
21 | 20 | rgen | |
22 | 21 | a1i | |
23 | breq1 | |
|
24 | 23 | notbid | |
25 | 24 | ralbidv | |
26 | breq2 | |
|
27 | 26 | imbi1d | |
28 | 27 | ralbidv | |
29 | 25 28 | anbi12d | |
30 | 29 | rspcev | |
31 | 5 9 22 30 | syl12anc | |
32 | simpl2 | |
|
33 | uzssz | |
|
34 | 1 33 | eqsstri | |
35 | 32 34 | sstrdi | |
36 | simpr | |
|
37 | simpl3 | |
|
38 | zsupss | |
|
39 | 35 36 37 38 | syl3anc | |
40 | ssrexv | |
|
41 | 32 39 40 | sylc | |
42 | 31 41 | pm2.61dane | |