Metamath Proof Explorer


Theorem uzsupss

Description: Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014) (Revised by Mario Carneiro, 21-Apr-2015)

Ref Expression
Hypothesis uzsupss.1 Z=M
Assertion uzsupss MAZxyAyxxZyA¬x<yyZy<xzAy<z

Proof

Step Hyp Ref Expression
1 uzsupss.1 Z=M
2 simpl1 MAZxyAyxA=M
3 uzid MMM
4 2 3 syl MAZxyAyxA=MM
5 4 1 eleqtrrdi MAZxyAyxA=MZ
6 ral0 y¬M<y
7 simpr MAZxyAyxA=A=
8 7 raleqdv MAZxyAyxA=yA¬M<yy¬M<y
9 6 8 mpbiri MAZxyAyxA=yA¬M<y
10 eluzle yMMy
11 eluzel2 yMM
12 eluzelz yMy
13 zre MM
14 zre yy
15 lenlt MyMy¬y<M
16 13 14 15 syl2an MyMy¬y<M
17 11 12 16 syl2anc yMMy¬y<M
18 10 17 mpbid yM¬y<M
19 18 1 eleq2s yZ¬y<M
20 19 pm2.21d yZy<MzAy<z
21 20 rgen yZy<MzAy<z
22 21 a1i MAZxyAyxA=yZy<MzAy<z
23 breq1 x=Mx<yM<y
24 23 notbid x=M¬x<y¬M<y
25 24 ralbidv x=MyA¬x<yyA¬M<y
26 breq2 x=My<xy<M
27 26 imbi1d x=My<xzAy<zy<MzAy<z
28 27 ralbidv x=MyZy<xzAy<zyZy<MzAy<z
29 25 28 anbi12d x=MyA¬x<yyZy<xzAy<zyA¬M<yyZy<MzAy<z
30 29 rspcev MZyA¬M<yyZy<MzAy<zxZyA¬x<yyZy<xzAy<z
31 5 9 22 30 syl12anc MAZxyAyxA=xZyA¬x<yyZy<xzAy<z
32 simpl2 MAZxyAyxAAZ
33 uzssz M
34 1 33 eqsstri Z
35 32 34 sstrdi MAZxyAyxAA
36 simpr MAZxyAyxAA
37 simpl3 MAZxyAyxAxyAyx
38 zsupss AAxyAyxxAyA¬x<yyZy<xzAy<z
39 35 36 37 38 syl3anc MAZxyAyxAxAyA¬x<yyZy<xzAy<z
40 ssrexv AZxAyA¬x<yyZy<xzAy<zxZyA¬x<yyZy<xzAy<z
41 32 39 40 sylc MAZxyAyxAxZyA¬x<yyZy<xzAy<z
42 31 41 pm2.61dane MAZxyAyxxZyA¬x<yyZy<xzAy<z