Metamath Proof Explorer


Theorem vdwapval

Description: Value of the arithmetic progression function. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion vdwapval K0ADXAAPKDm0K1X=A+mD

Proof

Step Hyp Ref Expression
1 vdwapfval K0APK=a,dranm0K1a+md
2 1 3ad2ant1 K0ADAPK=a,dranm0K1a+md
3 2 oveqd K0ADAAPKD=Aa,dranm0K1a+mdD
4 oveq2 d=Dmd=mD
5 oveq12 a=Amd=mDa+md=A+mD
6 4 5 sylan2 a=Ad=Da+md=A+mD
7 6 mpteq2dv a=Ad=Dm0K1a+md=m0K1A+mD
8 7 rneqd a=Ad=Dranm0K1a+md=ranm0K1A+mD
9 eqid a,dranm0K1a+md=a,dranm0K1a+md
10 ovex 0K1V
11 10 mptex m0K1A+mDV
12 11 rnex ranm0K1A+mDV
13 8 9 12 ovmpoa ADAa,dranm0K1a+mdD=ranm0K1A+mD
14 13 3adant1 K0ADAa,dranm0K1a+mdD=ranm0K1A+mD
15 3 14 eqtrd K0ADAAPKD=ranm0K1A+mD
16 eqid m0K1A+mD=m0K1A+mD
17 16 rnmpt ranm0K1A+mD=x|m0K1x=A+mD
18 15 17 eqtrdi K0ADAAPKD=x|m0K1x=A+mD
19 18 eleq2d K0ADXAAPKDXx|m0K1x=A+mD
20 id X=A+mDX=A+mD
21 ovex A+mDV
22 20 21 eqeltrdi X=A+mDXV
23 22 rexlimivw m0K1X=A+mDXV
24 eqeq1 x=Xx=A+mDX=A+mD
25 24 rexbidv x=Xm0K1x=A+mDm0K1X=A+mD
26 23 25 elab3 Xx|m0K1x=A+mDm0K1X=A+mD
27 19 26 bitrdi K0ADXAAPKDm0K1X=A+mD