Metamath Proof Explorer


Theorem weiunfrlem1

Description: Lemma for weiunfr . (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypotheses weiunfrlem1.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
weiunfrlem1.2 C = ι s F r | t F r ¬ t R s
Assertion weiunfrlem1 R We A R Se A r x A B r C F r w r ¬ F w R C

Proof

Step Hyp Ref Expression
1 weiunfrlem1.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
2 weiunfrlem1.2 C = ι s F r | t F r ¬ t R s
3 simpl R We A R Se A r x A B r R We A R Se A
4 1 weiunlem1 R We A R Se A F : x A B A w x A B w F w / x B w x A B v A w v / x B ¬ v R F w
5 4 adantr R We A R Se A r x A B r F : x A B A w x A B w F w / x B w x A B v A w v / x B ¬ v R F w
6 5 simp1d R We A R Se A r x A B r F : x A B A
7 6 fimassd R We A R Se A r x A B r F r A
8 simprl R We A R Se A r x A B r r x A B
9 6 fdmd R We A R Se A r x A B r dom F = x A B
10 8 9 sseqtrrd R We A R Se A r x A B r r dom F
11 sseqin2 r dom F dom F r = r
12 10 11 sylib R We A R Se A r x A B r dom F r = r
13 simprr R We A R Se A r x A B r r
14 12 13 eqnetrd R We A R Se A r x A B r dom F r
15 14 imadisjlnd R We A R Se A r x A B r F r
16 wereu2 R We A R Se A F r A F r ∃! s F r t F r ¬ t R s
17 3 7 15 16 syl12anc R We A R Se A r x A B r ∃! s F r t F r ¬ t R s
18 riotacl2 ∃! s F r t F r ¬ t R s ι s F r | t F r ¬ t R s s F r | t F r ¬ t R s
19 17 18 syl R We A R Se A r x A B r ι s F r | t F r ¬ t R s s F r | t F r ¬ t R s
20 2 19 eqeltrid R We A R Se A r x A B r C s F r | t F r ¬ t R s
21 6 ffnd R We A R Se A r x A B r F Fn x A B
22 breq1 t = F w t R s F w R s
23 22 notbid t = F w ¬ t R s ¬ F w R s
24 23 ralima F Fn x A B r x A B t F r ¬ t R s w r ¬ F w R s
25 24 rabbidv F Fn x A B r x A B s F r | t F r ¬ t R s = s F r | w r ¬ F w R s
26 21 8 25 syl2anc R We A R Se A r x A B r s F r | t F r ¬ t R s = s F r | w r ¬ F w R s
27 20 26 eleqtrd R We A R Se A r x A B r C s F r | w r ¬ F w R s
28 nfriota1 _ s ι s F r | t F r ¬ t R s
29 2 28 nfcxfr _ s C
30 nfcv _ s F r
31 nfcv _ s r
32 nfcv _ s F w
33 nfcv _ s R
34 32 33 29 nfbr s F w R C
35 34 nfn s ¬ F w R C
36 31 35 nfralw s w r ¬ F w R C
37 breq2 s = C F w R s F w R C
38 37 notbid s = C ¬ F w R s ¬ F w R C
39 38 ralbidv s = C w r ¬ F w R s w r ¬ F w R C
40 29 30 36 39 elrabf C s F r | w r ¬ F w R s C F r w r ¬ F w R C
41 27 40 sylib R We A R Se A r x A B r C F r w r ¬ F w R C