Step |
Hyp |
Ref |
Expression |
1 |
|
weiunfrlem1.1 |
⊢ 𝐹 = ( 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( ℩ 𝑢 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵 } ¬ 𝑣 𝑅 𝑢 ) ) |
2 |
|
weiunfrlem1.2 |
⊢ 𝐶 = ( ℩ 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 ) |
3 |
|
simpl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ) |
4 |
1
|
weiunlem1 |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑤 ∈ ⦋ ( 𝐹 ‘ 𝑤 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑣 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → ( 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑤 ∈ ⦋ ( 𝐹 ‘ 𝑤 ) / 𝑥 ⦌ 𝐵 ∧ ∀ 𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∀ 𝑣 ∈ 𝐴 ( 𝑤 ∈ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 → ¬ 𝑣 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) ) |
6 |
5
|
simp1d |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ 𝐴 ) |
7 |
6
|
fimassd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → ( 𝐹 “ 𝑟 ) ⊆ 𝐴 ) |
8 |
|
simprl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
9 |
6
|
fdmd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → dom 𝐹 = ∪ 𝑥 ∈ 𝐴 𝐵 ) |
10 |
8 9
|
sseqtrrd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → 𝑟 ⊆ dom 𝐹 ) |
11 |
|
sseqin2 |
⊢ ( 𝑟 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝑟 ) = 𝑟 ) |
12 |
10 11
|
sylib |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → ( dom 𝐹 ∩ 𝑟 ) = 𝑟 ) |
13 |
|
simprr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → 𝑟 ≠ ∅ ) |
14 |
12 13
|
eqnetrd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → ( dom 𝐹 ∩ 𝑟 ) ≠ ∅ ) |
15 |
14
|
imadisjlnd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → ( 𝐹 “ 𝑟 ) ≠ ∅ ) |
16 |
|
wereu2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ( 𝐹 “ 𝑟 ) ⊆ 𝐴 ∧ ( 𝐹 “ 𝑟 ) ≠ ∅ ) ) → ∃! 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 ) |
17 |
3 7 15 16
|
syl12anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → ∃! 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 ) |
18 |
|
riotacl2 |
⊢ ( ∃! 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 → ( ℩ 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 ) ∈ { 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 } ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → ( ℩ 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 ) ∈ { 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 } ) |
20 |
2 19
|
eqeltrid |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → 𝐶 ∈ { 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 } ) |
21 |
6
|
ffnd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → 𝐹 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ) |
22 |
|
breq1 |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑤 ) → ( 𝑡 𝑅 𝑠 ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 𝑠 ) ) |
23 |
22
|
notbid |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑤 ) → ( ¬ 𝑡 𝑅 𝑠 ↔ ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝑠 ) ) |
24 |
23
|
ralima |
⊢ ( ( 𝐹 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 ↔ ∀ 𝑤 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝑠 ) ) |
25 |
24
|
rabbidv |
⊢ ( ( 𝐹 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → { 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 } = { 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑤 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝑠 } ) |
26 |
21 8 25
|
syl2anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → { 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 } = { 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑤 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝑠 } ) |
27 |
20 26
|
eleqtrd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → 𝐶 ∈ { 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑤 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝑠 } ) |
28 |
|
nfriota1 |
⊢ Ⅎ 𝑠 ( ℩ 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∀ 𝑡 ∈ ( 𝐹 “ 𝑟 ) ¬ 𝑡 𝑅 𝑠 ) |
29 |
2 28
|
nfcxfr |
⊢ Ⅎ 𝑠 𝐶 |
30 |
|
nfcv |
⊢ Ⅎ 𝑠 ( 𝐹 “ 𝑟 ) |
31 |
|
nfcv |
⊢ Ⅎ 𝑠 𝑟 |
32 |
|
nfcv |
⊢ Ⅎ 𝑠 ( 𝐹 ‘ 𝑤 ) |
33 |
|
nfcv |
⊢ Ⅎ 𝑠 𝑅 |
34 |
32 33 29
|
nfbr |
⊢ Ⅎ 𝑠 ( 𝐹 ‘ 𝑤 ) 𝑅 𝐶 |
35 |
34
|
nfn |
⊢ Ⅎ 𝑠 ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝐶 |
36 |
31 35
|
nfralw |
⊢ Ⅎ 𝑠 ∀ 𝑤 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝐶 |
37 |
|
breq2 |
⊢ ( 𝑠 = 𝐶 → ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑠 ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 𝐶 ) ) |
38 |
37
|
notbid |
⊢ ( 𝑠 = 𝐶 → ( ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝑠 ↔ ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝐶 ) ) |
39 |
38
|
ralbidv |
⊢ ( 𝑠 = 𝐶 → ( ∀ 𝑤 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝑠 ↔ ∀ 𝑤 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝐶 ) ) |
40 |
29 30 36 39
|
elrabf |
⊢ ( 𝐶 ∈ { 𝑠 ∈ ( 𝐹 “ 𝑟 ) ∣ ∀ 𝑤 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝑠 } ↔ ( 𝐶 ∈ ( 𝐹 “ 𝑟 ) ∧ ∀ 𝑤 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝐶 ) ) |
41 |
27 40
|
sylib |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑟 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅ ) ) → ( 𝐶 ∈ ( 𝐹 “ 𝑟 ) ∧ ∀ 𝑤 ∈ 𝑟 ¬ ( 𝐹 ‘ 𝑤 ) 𝑅 𝐶 ) ) |