Description: Lemma for well-ordered recursion. When z is an R minimal element of ( A \ dom F ) , then its predecessor class is equal to dom F . Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wfrlem10OLD.1 | |
|
wfrlem10OLD.2 | |
||
Assertion | wfrlem10OLD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem10OLD.1 | |
|
2 | wfrlem10OLD.2 | |
|
3 | 2 | wfrlem8OLD | |
4 | 3 | biimpi | |
5 | predss | |
|
6 | 5 | a1i | |
7 | simpr | |
|
8 | eldifn | |
|
9 | eleq1w | |
|
10 | 9 | notbid | |
11 | 8 10 | syl5ibrcom | |
12 | 11 | con2d | |
13 | 12 | imp | |
14 | ssel | |
|
15 | 14 | con3d | |
16 | 8 15 | syl5com | |
17 | 2 | wfrdmclOLD | |
18 | 16 17 | impel | |
19 | eldifi | |
|
20 | elpredg | |
|
21 | 20 | ancoms | |
22 | 19 21 | sylan | |
23 | 18 22 | mtbid | |
24 | 2 | wfrdmssOLD | |
25 | 24 | sseli | |
26 | weso | |
|
27 | 1 26 | ax-mp | |
28 | solin | |
|
29 | 27 28 | mpan | |
30 | 25 19 29 | syl2anr | |
31 | 13 23 30 | ecase23d | |
32 | vex | |
|
33 | 32 | elpred | |
34 | 33 | elv | |
35 | 7 31 34 | sylanbrc | |
36 | 6 35 | eqelssd | |
37 | 4 36 | sylan9eqr | |