Metamath Proof Explorer


Theorem wfrlem10OLD

Description: Lemma for well-ordered recursion. When z is an R minimal element of ( A \ dom F ) , then its predecessor class is equal to dom F . Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypotheses wfrlem10OLD.1 RWeA
wfrlem10OLD.2 F=wrecsRAG
Assertion wfrlem10OLD zAdomFPredRAdomFz=PredRAz=domF

Proof

Step Hyp Ref Expression
1 wfrlem10OLD.1 RWeA
2 wfrlem10OLD.2 F=wrecsRAG
3 2 wfrlem8OLD PredRAdomFz=PredRAz=PredRdomFz
4 3 biimpi PredRAdomFz=PredRAz=PredRdomFz
5 predss PredRdomFzdomF
6 5 a1i zAdomFPredRdomFzdomF
7 simpr zAdomFwdomFwdomF
8 eldifn zAdomF¬zdomF
9 eleq1w w=zwdomFzdomF
10 9 notbid w=z¬wdomF¬zdomF
11 8 10 syl5ibrcom zAdomFw=z¬wdomF
12 11 con2d zAdomFwdomF¬w=z
13 12 imp zAdomFwdomF¬w=z
14 ssel PredRAwdomFzPredRAwzdomF
15 14 con3d PredRAwdomF¬zdomF¬zPredRAw
16 8 15 syl5com zAdomFPredRAwdomF¬zPredRAw
17 2 wfrdmclOLD wdomFPredRAwdomF
18 16 17 impel zAdomFwdomF¬zPredRAw
19 eldifi zAdomFzA
20 elpredg wdomFzAzPredRAwzRw
21 20 ancoms zAwdomFzPredRAwzRw
22 19 21 sylan zAdomFwdomFzPredRAwzRw
23 18 22 mtbid zAdomFwdomF¬zRw
24 2 wfrdmssOLD domFA
25 24 sseli wdomFwA
26 weso RWeAROrA
27 1 26 ax-mp ROrA
28 solin ROrAwAzAwRzw=zzRw
29 27 28 mpan wAzAwRzw=zzRw
30 25 19 29 syl2anr zAdomFwdomFwRzw=zzRw
31 13 23 30 ecase23d zAdomFwdomFwRz
32 vex wV
33 32 elpred zVwPredRdomFzwdomFwRz
34 33 elv wPredRdomFzwdomFwRz
35 7 31 34 sylanbrc zAdomFwdomFwPredRdomFz
36 6 35 eqelssd zAdomFPredRdomFz=domF
37 4 36 sylan9eqr zAdomFPredRAdomFz=PredRAz=domF