Metamath Proof Explorer


Theorem wfrlem1OLD

Description: Lemma for well-ordered recursion. The final item we are interested in is the union of acceptable functions B . This lemma just changes bound variables for later use. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem1OLD.1 B=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
Assertion wfrlem1OLD B=g|zgFnzzAwzPredRAwzwzgw=FgPredRAw

Proof

Step Hyp Ref Expression
1 wfrlem1OLD.1 B=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
2 fneq1 f=gfFnxgFnx
3 fveq1 f=gfy=gy
4 reseq1 f=gfPredRAy=gPredRAy
5 4 fveq2d f=gFfPredRAy=FgPredRAy
6 3 5 eqeq12d f=gfy=FfPredRAygy=FgPredRAy
7 6 ralbidv f=gyxfy=FfPredRAyyxgy=FgPredRAy
8 2 7 3anbi13d f=gfFnxxAyxPredRAyxyxfy=FfPredRAygFnxxAyxPredRAyxyxgy=FgPredRAy
9 8 exbidv f=gxfFnxxAyxPredRAyxyxfy=FfPredRAyxgFnxxAyxPredRAyxyxgy=FgPredRAy
10 fneq2 x=zgFnxgFnz
11 sseq1 x=zxAzA
12 sseq2 x=zPredRAyxPredRAyz
13 12 raleqbi1dv x=zyxPredRAyxyzPredRAyz
14 predeq3 y=wPredRAy=PredRAw
15 14 sseq1d y=wPredRAyzPredRAwz
16 15 cbvralvw yzPredRAyzwzPredRAwz
17 13 16 bitrdi x=zyxPredRAyxwzPredRAwz
18 11 17 anbi12d x=zxAyxPredRAyxzAwzPredRAwz
19 raleq x=zyxgy=FgPredRAyyzgy=FgPredRAy
20 fveq2 y=wgy=gw
21 14 reseq2d y=wgPredRAy=gPredRAw
22 21 fveq2d y=wFgPredRAy=FgPredRAw
23 20 22 eqeq12d y=wgy=FgPredRAygw=FgPredRAw
24 23 cbvralvw yzgy=FgPredRAywzgw=FgPredRAw
25 19 24 bitrdi x=zyxgy=FgPredRAywzgw=FgPredRAw
26 10 18 25 3anbi123d x=zgFnxxAyxPredRAyxyxgy=FgPredRAygFnzzAwzPredRAwzwzgw=FgPredRAw
27 26 cbvexvw xgFnxxAyxPredRAyxyxgy=FgPredRAyzgFnzzAwzPredRAwzwzgw=FgPredRAw
28 9 27 bitrdi f=gxfFnxxAyxPredRAyxyxfy=FfPredRAyzgFnzzAwzPredRAwzwzgw=FgPredRAw
29 28 cbvabv f|xfFnxxAyxPredRAyxyxfy=FfPredRAy=g|zgFnzzAwzPredRAwzwzgw=FgPredRAw
30 1 29 eqtri B=g|zgFnzzAwzPredRAwzwzgw=FgPredRAw