Description: Lemma for well-ordered recursion. The values of two acceptable functions agree within their domains. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wfrlem5OLD.1 | |
|
wfrlem5OLD.2 | |
||
wfrlem5OLD.3 | |
||
Assertion | wfrlem5OLD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem5OLD.1 | |
|
2 | wfrlem5OLD.2 | |
|
3 | wfrlem5OLD.3 | |
|
4 | vex | |
|
5 | vex | |
|
6 | 4 5 | breldm | |
7 | vex | |
|
8 | 4 7 | breldm | |
9 | 6 8 | anim12i | |
10 | elin | |
|
11 | 9 10 | sylibr | |
12 | anandi | |
|
13 | 5 | brresi | |
14 | 7 | brresi | |
15 | 13 14 | anbi12i | |
16 | 12 15 | sylbb2 | |
17 | 11 16 | mpancom | |
18 | 3 | wfrlem3OLD | |
19 | ssinss1 | |
|
20 | wess | |
|
21 | 1 20 | mpi | |
22 | sess2 | |
|
23 | 2 22 | mpi | |
24 | 21 23 | jca | |
25 | 18 19 24 | 3syl | |
26 | 25 | adantr | |
27 | 3 | wfrlem4OLD | |
28 | 3 | wfrlem4OLD | |
29 | 28 | ancoms | |
30 | incom | |
|
31 | 30 | reseq2i | |
32 | 31 | fneq1i | |
33 | 30 | fneq2i | |
34 | 32 33 | bitri | |
35 | 31 | fveq1i | |
36 | predeq2 | |
|
37 | 30 36 | ax-mp | |
38 | 31 37 | reseq12i | |
39 | 38 | fveq2i | |
40 | 35 39 | eqeq12i | |
41 | 30 40 | raleqbii | |
42 | 34 41 | anbi12i | |
43 | 29 42 | sylibr | |
44 | wfr3g | |
|
45 | 26 27 43 44 | syl3anc | |
46 | 45 | breqd | |
47 | 46 | biimprd | |
48 | 3 | wfrlem2OLD | |
49 | funres | |
|
50 | dffun2 | |
|
51 | 50 | simprbi | |
52 | 2sp | |
|
53 | 52 | sps | |
54 | 48 49 51 53 | 4syl | |
55 | 54 | adantr | |
56 | 47 55 | sylan2d | |
57 | 17 56 | syl5 | |