Description: Implications of a word of length two. (Contributed by AV, 27-Jul-2018) (Proof shortened by AV, 14-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | wrdlen2i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex | |
|
2 | 1ex | |
|
3 | 1 2 | pm3.2i | |
4 | simpl | |
|
5 | 0ne1 | |
|
6 | 5 | a1i | |
7 | fprg | |
|
8 | 3 4 6 7 | mp3an2i | |
9 | fzo0to2pr | |
|
10 | 9 | eqcomi | |
11 | 10 | a1i | |
12 | 11 | feq2d | |
13 | 12 | biimpa | |
14 | prssi | |
|
15 | 14 | adantr | |
16 | 13 15 | fssd | |
17 | 16 | ex | |
18 | 17 | adantr | |
19 | 18 | impcom | |
20 | feq1 | |
|
21 | 20 | adantl | |
22 | 21 | adantl | |
23 | 19 22 | mpbird | |
24 | 8 23 | mpancom | |
25 | iswrdi | |
|
26 | 24 25 | syl | |
27 | fveq2 | |
|
28 | 5 | neii | |
29 | simpl | |
|
30 | opth1g | |
|
31 | 1 29 30 | sylancr | |
32 | 28 31 | mtoi | |
33 | 32 | neqned | |
34 | opex | |
|
35 | opex | |
|
36 | 34 35 | pm3.2i | |
37 | hashprg | |
|
38 | 36 37 | mp1i | |
39 | 33 38 | mpbid | |
40 | 27 39 | sylan9eqr | |
41 | 5 | a1i | |
42 | fvpr1g | |
|
43 | 1 29 41 42 | mp3an2i | |
44 | simpr | |
|
45 | fvpr2g | |
|
46 | 2 44 41 45 | mp3an2i | |
47 | 43 46 | jca | |
48 | 47 | adantr | |
49 | fveq1 | |
|
50 | 49 | eqeq1d | |
51 | fveq1 | |
|
52 | 51 | eqeq1d | |
53 | 50 52 | anbi12d | |
54 | 53 | adantl | |
55 | 48 54 | mpbird | |
56 | 26 40 55 | jca31 | |
57 | 56 | ex | |