Metamath Proof Explorer


Theorem wrdlen2i

Description: Implications of a word of length two. (Contributed by AV, 27-Jul-2018) (Proof shortened by AV, 14-Oct-2018)

Ref Expression
Assertion wrdlen2i SVTVW=0S1TWWordVW=2W0=SW1=T

Proof

Step Hyp Ref Expression
1 c0ex 0V
2 1ex 1V
3 1 2 pm3.2i 0V1V
4 simpl SVTVW=0S1TSVTV
5 0ne1 01
6 5 a1i SVTVW=0S1T01
7 fprg 0V1VSVTV010S1T:01ST
8 3 4 6 7 mp3an2i SVTVW=0S1T0S1T:01ST
9 fzo0to2pr 0..^2=01
10 9 eqcomi 01=0..^2
11 10 a1i SVTV01=0..^2
12 11 feq2d SVTV0S1T:01ST0S1T:0..^2ST
13 12 biimpa SVTV0S1T:01ST0S1T:0..^2ST
14 prssi SVTVSTV
15 14 adantr SVTV0S1T:01STSTV
16 13 15 fssd SVTV0S1T:01ST0S1T:0..^2V
17 16 ex SVTV0S1T:01ST0S1T:0..^2V
18 17 adantr SVTVW=0S1T0S1T:01ST0S1T:0..^2V
19 18 impcom 0S1T:01STSVTVW=0S1T0S1T:0..^2V
20 feq1 W=0S1TW:0..^2V0S1T:0..^2V
21 20 adantl SVTVW=0S1TW:0..^2V0S1T:0..^2V
22 21 adantl 0S1T:01STSVTVW=0S1TW:0..^2V0S1T:0..^2V
23 19 22 mpbird 0S1T:01STSVTVW=0S1TW:0..^2V
24 8 23 mpancom SVTVW=0S1TW:0..^2V
25 iswrdi W:0..^2VWWordV
26 24 25 syl SVTVW=0S1TWWordV
27 fveq2 W=0S1TW=0S1T
28 5 neii ¬0=1
29 simpl SVTVSV
30 opth1g 0VSV0S=1T0=1
31 1 29 30 sylancr SVTV0S=1T0=1
32 28 31 mtoi SVTV¬0S=1T
33 32 neqned SVTV0S1T
34 opex 0SV
35 opex 1TV
36 34 35 pm3.2i 0SV1TV
37 hashprg 0SV1TV0S1T0S1T=2
38 36 37 mp1i SVTV0S1T0S1T=2
39 33 38 mpbid SVTV0S1T=2
40 27 39 sylan9eqr SVTVW=0S1TW=2
41 5 a1i SVTV01
42 fvpr1g 0VSV010S1T0=S
43 1 29 41 42 mp3an2i SVTV0S1T0=S
44 simpr SVTVTV
45 fvpr2g 1VTV010S1T1=T
46 2 44 41 45 mp3an2i SVTV0S1T1=T
47 43 46 jca SVTV0S1T0=S0S1T1=T
48 47 adantr SVTVW=0S1T0S1T0=S0S1T1=T
49 fveq1 W=0S1TW0=0S1T0
50 49 eqeq1d W=0S1TW0=S0S1T0=S
51 fveq1 W=0S1TW1=0S1T1
52 51 eqeq1d W=0S1TW1=T0S1T1=T
53 50 52 anbi12d W=0S1TW0=SW1=T0S1T0=S0S1T1=T
54 53 adantl SVTVW=0S1TW0=SW1=T0S1T0=S0S1T1=T
55 48 54 mpbird SVTVW=0S1TW0=SW1=T
56 26 40 55 jca31 SVTVW=0S1TWWordVW=2W0=SW1=T
57 56 ex SVTVW=0S1TWWordVW=2W0=SW1=T