| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wwlks2onv.v |
|
| 2 |
1
|
wwlksonvtx |
|
| 3 |
2
|
adantl |
|
| 4 |
|
simprl |
|
| 5 |
|
wwlknon |
|
| 6 |
|
wwlknbp1 |
|
| 7 |
|
s3fv1 |
|
| 8 |
7
|
eqcomd |
|
| 9 |
8
|
adantl |
|
| 10 |
1
|
eqcomi |
|
| 11 |
10
|
wrdeqi |
|
| 12 |
11
|
eleq2i |
|
| 13 |
12
|
biimpi |
|
| 14 |
|
1ex |
|
| 15 |
14
|
tpid2 |
|
| 16 |
|
s3len |
|
| 17 |
16
|
oveq2i |
|
| 18 |
|
fzo0to3tp |
|
| 19 |
17 18
|
eqtri |
|
| 20 |
15 19
|
eleqtrri |
|
| 21 |
|
wrdsymbcl |
|
| 22 |
13 20 21
|
sylancl |
|
| 23 |
22
|
adantr |
|
| 24 |
9 23
|
eqeltrd |
|
| 25 |
24
|
ex |
|
| 26 |
25
|
3ad2ant2 |
|
| 27 |
6 26
|
syl |
|
| 28 |
27
|
3ad2ant1 |
|
| 29 |
5 28
|
sylbi |
|
| 30 |
29
|
impcom |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simprr |
|
| 33 |
4 31 32
|
3jca |
|
| 34 |
3 33
|
mpdan |
|