| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlks2onv.v |  | 
						
							| 2 | 1 | wwlksonvtx |  | 
						
							| 3 | 2 | adantl |  | 
						
							| 4 |  | simprl |  | 
						
							| 5 |  | wwlknon |  | 
						
							| 6 |  | wwlknbp1 |  | 
						
							| 7 |  | s3fv1 |  | 
						
							| 8 | 7 | eqcomd |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 | 1 | eqcomi |  | 
						
							| 11 | 10 | wrdeqi |  | 
						
							| 12 | 11 | eleq2i |  | 
						
							| 13 | 12 | biimpi |  | 
						
							| 14 |  | 1ex |  | 
						
							| 15 | 14 | tpid2 |  | 
						
							| 16 |  | s3len |  | 
						
							| 17 | 16 | oveq2i |  | 
						
							| 18 |  | fzo0to3tp |  | 
						
							| 19 | 17 18 | eqtri |  | 
						
							| 20 | 15 19 | eleqtrri |  | 
						
							| 21 |  | wrdsymbcl |  | 
						
							| 22 | 13 20 21 | sylancl |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 | 9 23 | eqeltrd |  | 
						
							| 25 | 24 | ex |  | 
						
							| 26 | 25 | 3ad2ant2 |  | 
						
							| 27 | 6 26 | syl |  | 
						
							| 28 | 27 | 3ad2ant1 |  | 
						
							| 29 | 5 28 | sylbi |  | 
						
							| 30 | 29 | impcom |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 |  | simprr |  | 
						
							| 33 | 4 31 32 | 3jca |  | 
						
							| 34 | 3 33 | mpdan |  |