| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnredwwlkn.e |  | 
						
							| 2 | 1 | wwlksnredwwlkn |  | 
						
							| 3 | 2 | imp |  | 
						
							| 4 |  | simpl |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 |  | fveq1 |  | 
						
							| 7 | 6 | eqcoms |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 9 1 | wwlknp |  | 
						
							| 11 |  | nn0p1nn |  | 
						
							| 12 |  | peano2nn0 |  | 
						
							| 13 |  | nn0re |  | 
						
							| 14 |  | lep1 |  | 
						
							| 15 | 12 13 14 | 3syl |  | 
						
							| 16 |  | peano2nn0 |  | 
						
							| 17 | 16 | nn0zd |  | 
						
							| 18 |  | fznn |  | 
						
							| 19 | 12 17 18 | 3syl |  | 
						
							| 20 | 11 15 19 | mpbir2and |  | 
						
							| 21 |  | oveq2 |  | 
						
							| 22 | 21 | eleq2d |  | 
						
							| 23 | 20 22 | imbitrrid |  | 
						
							| 24 | 23 | adantl |  | 
						
							| 25 |  | simpl |  | 
						
							| 26 | 24 25 | jctild |  | 
						
							| 27 | 26 | 3adant3 |  | 
						
							| 28 | 10 27 | syl |  | 
						
							| 29 | 28 | impcom |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 |  | pfxfv0 |  | 
						
							| 34 | 32 33 | syl |  | 
						
							| 35 |  | simprll |  | 
						
							| 36 | 8 34 35 | 3eqtrd |  | 
						
							| 37 | 36 | ex |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 38 | impcom |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 | 40 | adantl |  | 
						
							| 42 | 5 39 41 | 3jca |  | 
						
							| 43 | 42 | ex |  | 
						
							| 44 | 43 | reximdva |  | 
						
							| 45 | 44 | ex |  | 
						
							| 46 | 45 | com13 |  | 
						
							| 47 | 3 46 | mpcom |  | 
						
							| 48 | 29 33 | syl |  | 
						
							| 49 | 48 | eqcomd |  | 
						
							| 50 | 49 | adantl |  | 
						
							| 51 |  | fveq1 |  | 
						
							| 52 | 51 | adantr |  | 
						
							| 53 | 52 | adantr |  | 
						
							| 54 |  | simpr |  | 
						
							| 55 | 54 | adantr |  | 
						
							| 56 | 50 53 55 | 3eqtrd |  | 
						
							| 57 | 56 | ex |  | 
						
							| 58 | 57 | 3adant3 |  | 
						
							| 59 | 58 | com12 |  | 
						
							| 60 | 59 | rexlimdvw |  | 
						
							| 61 | 47 60 | impbid |  |