Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | xaddcom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr | |
|
2 | elxr | |
|
3 | recn | |
|
4 | recn | |
|
5 | addcom | |
|
6 | 3 4 5 | syl2an | |
7 | rexadd | |
|
8 | rexadd | |
|
9 | 8 | ancoms | |
10 | 6 7 9 | 3eqtr4d | |
11 | oveq2 | |
|
12 | rexr | |
|
13 | renemnf | |
|
14 | xaddpnf1 | |
|
15 | 12 13 14 | syl2anc | |
16 | 11 15 | sylan9eqr | |
17 | oveq1 | |
|
18 | xaddpnf2 | |
|
19 | 12 13 18 | syl2anc | |
20 | 17 19 | sylan9eqr | |
21 | 16 20 | eqtr4d | |
22 | oveq2 | |
|
23 | renepnf | |
|
24 | xaddmnf1 | |
|
25 | 12 23 24 | syl2anc | |
26 | 22 25 | sylan9eqr | |
27 | oveq1 | |
|
28 | xaddmnf2 | |
|
29 | 12 23 28 | syl2anc | |
30 | 27 29 | sylan9eqr | |
31 | 26 30 | eqtr4d | |
32 | 10 21 31 | 3jaodan | |
33 | 2 32 | sylan2b | |
34 | pnfaddmnf | |
|
35 | mnfaddpnf | |
|
36 | 34 35 | eqtr4i | |
37 | simpr | |
|
38 | 37 | oveq2d | |
39 | 37 | oveq1d | |
40 | 36 38 39 | 3eqtr4a | |
41 | xaddpnf2 | |
|
42 | xaddpnf1 | |
|
43 | 41 42 | eqtr4d | |
44 | 40 43 | pm2.61dane | |
45 | 44 | adantl | |
46 | simpl | |
|
47 | 46 | oveq1d | |
48 | 46 | oveq2d | |
49 | 45 47 48 | 3eqtr4d | |
50 | 35 34 | eqtr4i | |
51 | simpr | |
|
52 | 51 | oveq2d | |
53 | 51 | oveq1d | |
54 | 50 52 53 | 3eqtr4a | |
55 | xaddmnf2 | |
|
56 | xaddmnf1 | |
|
57 | 55 56 | eqtr4d | |
58 | 54 57 | pm2.61dane | |
59 | 58 | adantl | |
60 | simpl | |
|
61 | 60 | oveq1d | |
62 | 60 | oveq2d | |
63 | 59 61 62 | 3eqtr4d | |
64 | 33 49 63 | 3jaoian | |
65 | 1 64 | sylanb | |