Metamath Proof Explorer


Theorem xlimpnfxnegmnf2

Description: A sequence converges to +oo if and only if its negation converges to -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimpnfxnegmnf2.j _jF
xlimpnfxnegmnf2.m φM
xlimpnfxnegmnf2.z Z=M
xlimpnfxnegmnf2.f φF:Z*
Assertion xlimpnfxnegmnf2 φF*+∞jZFj*−∞

Proof

Step Hyp Ref Expression
1 xlimpnfxnegmnf2.j _jF
2 xlimpnfxnegmnf2.m φM
3 xlimpnfxnegmnf2.z Z=M
4 xlimpnfxnegmnf2.f φF:Z*
5 1 3 4 xlimpnfxnegmnf φxkZjkxFjxkZjkFjx
6 1 2 3 4 xlimpnf φF*+∞xkZjkxFj
7 nfmpt1 _jjZFj
8 4 ffvelcdmda φkZFk*
9 8 xnegcld φkZFk*
10 nfcv _kFj
11 nfcv _jk
12 1 11 nffv _jFk
13 12 nfxneg _jFk
14 fveq2 j=kFj=Fk
15 14 xnegeqd j=kFj=Fk
16 10 13 15 cbvmpt jZFj=kZFk
17 9 16 fmptd φjZFj:Z*
18 7 2 3 17 xlimmnf φjZFj*−∞xkZjkjZFjjx
19 3 uztrn2 kZjkjZ
20 xnegex FjV
21 fvmpt4 jZFjVjZFjj=Fj
22 20 21 mpan2 jZjZFjj=Fj
23 22 breq1d jZjZFjjxFjx
24 19 23 syl kZjkjZFjjxFjx
25 24 ralbidva kZjkjZFjjxjkFjx
26 25 rexbiia kZjkjZFjjxkZjkFjx
27 26 ralbii xkZjkjZFjjxxkZjkFjx
28 18 27 bitrdi φjZFj*−∞xkZjkFjx
29 5 6 28 3bitr4d φF*+∞jZFj*−∞