Metamath Proof Explorer


Theorem xmetresbl

Description: An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec , this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +oo from each other. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypothesis xmetresbl.1 B=PballDR
Assertion xmetresbl D∞MetXPXR*DB×BMetB

Proof

Step Hyp Ref Expression
1 xmetresbl.1 B=PballDR
2 simp1 D∞MetXPXR*D∞MetX
3 blssm D∞MetXPXR*PballDRX
4 1 3 eqsstrid D∞MetXPXR*BX
5 xmetres2 D∞MetXBXDB×B∞MetB
6 2 4 5 syl2anc D∞MetXPXR*DB×B∞MetB
7 xmetf D∞MetXD:X×X*
8 2 7 syl D∞MetXPXR*D:X×X*
9 xpss12 BXBXB×BX×X
10 4 4 9 syl2anc D∞MetXPXR*B×BX×X
11 8 10 fssresd D∞MetXPXR*DB×B:B×B*
12 11 ffnd D∞MetXPXR*DB×BFnB×B
13 ovres xByBxDB×By=xDy
14 13 adantl D∞MetXPXR*xByBxDB×By=xDy
15 simpl1 D∞MetXPXR*xByBD∞MetX
16 eqid D-1=D-1
17 16 xmeter D∞MetXD-1ErX
18 15 17 syl D∞MetXPXR*xByBD-1ErX
19 16 blssec D∞MetXPXR*PballDRPD-1
20 1 19 eqsstrid D∞MetXPXR*BPD-1
21 20 sselda D∞MetXPXR*xBxPD-1
22 21 adantrr D∞MetXPXR*xByBxPD-1
23 simpl2 D∞MetXPXR*xByBPX
24 elecg xPD-1PXxPD-1PD-1x
25 22 23 24 syl2anc D∞MetXPXR*xByBxPD-1PD-1x
26 22 25 mpbid D∞MetXPXR*xByBPD-1x
27 20 sselda D∞MetXPXR*yByPD-1
28 27 adantrl D∞MetXPXR*xByByPD-1
29 elecg yPD-1PXyPD-1PD-1y
30 28 23 29 syl2anc D∞MetXPXR*xByByPD-1PD-1y
31 28 30 mpbid D∞MetXPXR*xByBPD-1y
32 18 26 31 ertr3d D∞MetXPXR*xByBxD-1y
33 16 xmeterval D∞MetXxD-1yxXyXxDy
34 15 33 syl D∞MetXPXR*xByBxD-1yxXyXxDy
35 32 34 mpbid D∞MetXPXR*xByBxXyXxDy
36 35 simp3d D∞MetXPXR*xByBxDy
37 14 36 eqeltrd D∞MetXPXR*xByBxDB×By
38 37 ralrimivva D∞MetXPXR*xByBxDB×By
39 ffnov DB×B:B×BDB×BFnB×BxByBxDB×By
40 12 38 39 sylanbrc D∞MetXPXR*DB×B:B×B
41 ismet2 DB×BMetBDB×B∞MetBDB×B:B×B
42 6 40 41 sylanbrc D∞MetXPXR*DB×BMetB