Description: Existential uniqueness of reciprocals. Theorem I.8 of Apostol p. 18. (Contributed by Thierry Arnoux, 17-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | xreceu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr | |
|
2 | xrecex | |
|
3 | 2 | 3adant1 | |
4 | ssrexv | |
|
5 | 1 3 4 | mpsyl | |
6 | simprl | |
|
7 | simpll | |
|
8 | 6 7 | xmulcld | |
9 | oveq1 | |
|
10 | 9 | ad2antll | |
11 | simplr | |
|
12 | 11 | rexrd | |
13 | xmulass | |
|
14 | 12 6 7 13 | syl3anc | |
15 | xmullid | |
|
16 | 7 15 | syl | |
17 | 10 14 16 | 3eqtr3d | |
18 | oveq2 | |
|
19 | 18 | eqeq1d | |
20 | 19 | rspcev | |
21 | 8 17 20 | syl2anc | |
22 | 21 | rexlimdvaa | |
23 | 22 | 3adant3 | |
24 | 5 23 | mpd | |
25 | eqtr3 | |
|
26 | simp1 | |
|
27 | simp2 | |
|
28 | simp3l | |
|
29 | simp3r | |
|
30 | 26 27 28 29 | xmulcand | |
31 | 25 30 | imbitrid | |
32 | 31 | 3expa | |
33 | 32 | expcom | |
34 | 33 | 3adant1 | |
35 | 34 | ralrimivv | |
36 | oveq2 | |
|
37 | 36 | eqeq1d | |
38 | 37 | reu4 | |
39 | 24 35 38 | sylanbrc | |