Metamath Proof Explorer


Theorem xreceu

Description: Existential uniqueness of reciprocals. Theorem I.8 of Apostol p. 18. (Contributed by Thierry Arnoux, 17-Dec-2016)

Ref Expression
Assertion xreceu A*BB0∃!x*B𝑒x=A

Proof

Step Hyp Ref Expression
1 ressxr *
2 xrecex BB0yB𝑒y=1
3 2 3adant1 A*BB0yB𝑒y=1
4 ssrexv *yB𝑒y=1y*B𝑒y=1
5 1 3 4 mpsyl A*BB0y*B𝑒y=1
6 simprl A*By*B𝑒y=1y*
7 simpll A*By*B𝑒y=1A*
8 6 7 xmulcld A*By*B𝑒y=1y𝑒A*
9 oveq1 B𝑒y=1B𝑒y𝑒A=1𝑒A
10 9 ad2antll A*By*B𝑒y=1B𝑒y𝑒A=1𝑒A
11 simplr A*By*B𝑒y=1B
12 11 rexrd A*By*B𝑒y=1B*
13 xmulass B*y*A*B𝑒y𝑒A=B𝑒y𝑒A
14 12 6 7 13 syl3anc A*By*B𝑒y=1B𝑒y𝑒A=B𝑒y𝑒A
15 xmullid A*1𝑒A=A
16 7 15 syl A*By*B𝑒y=11𝑒A=A
17 10 14 16 3eqtr3d A*By*B𝑒y=1B𝑒y𝑒A=A
18 oveq2 x=y𝑒AB𝑒x=B𝑒y𝑒A
19 18 eqeq1d x=y𝑒AB𝑒x=AB𝑒y𝑒A=A
20 19 rspcev y𝑒A*B𝑒y𝑒A=Ax*B𝑒x=A
21 8 17 20 syl2anc A*By*B𝑒y=1x*B𝑒x=A
22 21 rexlimdvaa A*By*B𝑒y=1x*B𝑒x=A
23 22 3adant3 A*BB0y*B𝑒y=1x*B𝑒x=A
24 5 23 mpd A*BB0x*B𝑒x=A
25 eqtr3 B𝑒x=AB𝑒y=AB𝑒x=B𝑒y
26 simp1 x*y*BB0x*
27 simp2 x*y*BB0y*
28 simp3l x*y*BB0B
29 simp3r x*y*BB0B0
30 26 27 28 29 xmulcand x*y*BB0B𝑒x=B𝑒yx=y
31 25 30 imbitrid x*y*BB0B𝑒x=AB𝑒y=Ax=y
32 31 3expa x*y*BB0B𝑒x=AB𝑒y=Ax=y
33 32 expcom BB0x*y*B𝑒x=AB𝑒y=Ax=y
34 33 3adant1 A*BB0x*y*B𝑒x=AB𝑒y=Ax=y
35 34 ralrimivv A*BB0x*y*B𝑒x=AB𝑒y=Ax=y
36 oveq2 x=yB𝑒x=B𝑒y
37 36 eqeq1d x=yB𝑒x=AB𝑒y=A
38 37 reu4 ∃!x*B𝑒x=Ax*B𝑒x=Ax*y*B𝑒x=AB𝑒y=Ax=y
39 24 35 38 sylanbrc A*BB0∃!x*B𝑒x=A