Metamath Proof Explorer


Theorem xrge0tsms2

Description: Any finite or infinite sum in the nonnegative extended reals is convergent. This is a rather unique property of the set [ 0 , +oo ] ; a similar theorem is not true for RR* or RR or [ 0 , +oo ) . It is true for NN0 u. { +oo } , however, or more generally any additive submonoid of [ 0 , +oo ) with +oo adjoined. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypothesis xrge0tsms2.g G=𝑠*𝑠0+∞
Assertion xrge0tsms2 AVF:A0+∞GtsumsF1𝑜

Proof

Step Hyp Ref Expression
1 xrge0tsms2.g G=𝑠*𝑠0+∞
2 simpl AVF:A0+∞AV
3 simpr AVF:A0+∞F:A0+∞
4 eqid supranx𝒫AFinGFx*<=supranx𝒫AFinGFx*<
5 1 2 3 4 xrge0tsms AVF:A0+∞GtsumsF=supranx𝒫AFinGFx*<
6 xrltso <Or*
7 6 supex supranx𝒫AFinGFx*<V
8 7 ensn1 supranx𝒫AFinGFx*<1𝑜
9 5 8 eqbrtrdi AVF:A0+∞GtsumsF1𝑜