Metamath Proof Explorer


Theorem xrinfmss

Description: Any subset of extended reals has an infimum. (Contributed by NM, 25-Oct-2005)

Ref Expression
Assertion xrinfmss A*x*yA¬y<xy*x<yzAz<y

Proof

Step Hyp Ref Expression
1 xrinfmsslem A*A−∞Ax*yA¬y<xy*x<yzAz<y
2 ssdifss A*A+∞*
3 ssxr A+∞*A+∞+∞A+∞−∞A+∞
4 3orass A+∞+∞A+∞−∞A+∞A+∞+∞A+∞−∞A+∞
5 pnfex +∞V
6 5 snid +∞+∞
7 elndif +∞+∞¬+∞A+∞
8 biorf ¬+∞A+∞−∞A+∞+∞A+∞−∞A+∞
9 6 7 8 mp2b −∞A+∞+∞A+∞−∞A+∞
10 9 orbi2i A+∞−∞A+∞A+∞+∞A+∞−∞A+∞
11 4 10 bitr4i A+∞+∞A+∞−∞A+∞A+∞−∞A+∞
12 3 11 sylib A+∞*A+∞−∞A+∞
13 xrinfmsslem A+∞*A+∞−∞A+∞x*yA+∞¬y<xy*x<yzA+∞z<y
14 2 12 13 syl2anc2 A*x*yA+∞¬y<xy*x<yzA+∞z<y
15 xrinfmexpnf x*yA+∞¬y<xy*x<yzA+∞z<yx*yA+∞+∞¬y<xy*x<yzA+∞+∞z<y
16 5 snss +∞A+∞A
17 undif +∞A+∞A+∞=A
18 uncom +∞A+∞=A+∞+∞
19 18 eqeq1i +∞A+∞=AA+∞+∞=A
20 17 19 bitri +∞AA+∞+∞=A
21 16 20 bitri +∞AA+∞+∞=A
22 raleq A+∞+∞=AyA+∞+∞¬y<xyA¬y<x
23 rexeq A+∞+∞=AzA+∞+∞z<yzAz<y
24 23 imbi2d A+∞+∞=Ax<yzA+∞+∞z<yx<yzAz<y
25 24 ralbidv A+∞+∞=Ay*x<yzA+∞+∞z<yy*x<yzAz<y
26 22 25 anbi12d A+∞+∞=AyA+∞+∞¬y<xy*x<yzA+∞+∞z<yyA¬y<xy*x<yzAz<y
27 21 26 sylbi +∞AyA+∞+∞¬y<xy*x<yzA+∞+∞z<yyA¬y<xy*x<yzAz<y
28 27 rexbidv +∞Ax*yA+∞+∞¬y<xy*x<yzA+∞+∞z<yx*yA¬y<xy*x<yzAz<y
29 15 28 imbitrid +∞Ax*yA+∞¬y<xy*x<yzA+∞z<yx*yA¬y<xy*x<yzAz<y
30 14 29 mpan9 A*+∞Ax*yA¬y<xy*x<yzAz<y
31 ssxr A*A+∞A−∞A
32 df-3or A+∞A−∞AA+∞A−∞A
33 or32 A+∞A−∞AA−∞A+∞A
34 32 33 bitri A+∞A−∞AA−∞A+∞A
35 31 34 sylib A*A−∞A+∞A
36 1 30 35 mpjaodan A*x*yA¬y<xy*x<yzAz<y