Metamath Proof Explorer


Theorem znval

Description: The value of the Z/nZ structure. It is defined as the quotient ring ZZ / n ZZ , with an "artificial" ordering added to make it a Toset . (In other words, Z/nZ is aring with anorder , but it is not anordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 2-May-2016) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znval.s S=RSpanring
znval.u U=ring/𝑠ring~QGSN
znval.y Y=/N
znval.f F=ℤRHomUW
znval.w W=ifN=00..^N
znval.l ˙=FF-1
Assertion znval N0Y=UsSetndx˙

Proof

Step Hyp Ref Expression
1 znval.s S=RSpanring
2 znval.u U=ring/𝑠ring~QGSN
3 znval.y Y=/N
4 znval.f F=ℤRHomUW
5 znval.w W=ifN=00..^N
6 znval.l ˙=FF-1
7 zringring ringRing
8 7 a1i n=NringRing
9 ovexd n=Nz=ringz/𝑠z~QGRSpanznV
10 id s=z/𝑠z~QGRSpanzns=z/𝑠z~QGRSpanzn
11 simpr n=Nz=ringz=ring
12 11 fveq2d n=Nz=ringRSpanz=RSpanring
13 12 1 eqtr4di n=Nz=ringRSpanz=S
14 simpl n=Nz=ringn=N
15 14 sneqd n=Nz=ringn=N
16 13 15 fveq12d n=Nz=ringRSpanzn=SN
17 11 16 oveq12d n=Nz=ringz~QGRSpanzn=ring~QGSN
18 11 17 oveq12d n=Nz=ringz/𝑠z~QGRSpanzn=ring/𝑠ring~QGSN
19 18 2 eqtr4di n=Nz=ringz/𝑠z~QGRSpanzn=U
20 10 19 sylan9eqr n=Nz=rings=z/𝑠z~QGRSpanzns=U
21 fvex ℤRHomsV
22 21 resex ℤRHomsifn=00..^nV
23 22 a1i n=Nz=rings=z/𝑠z~QGRSpanznℤRHomsifn=00..^nV
24 id f=ℤRHomsifn=00..^nf=ℤRHomsifn=00..^n
25 20 fveq2d n=Nz=rings=z/𝑠z~QGRSpanznℤRHoms=ℤRHomU
26 simpll n=Nz=rings=z/𝑠z~QGRSpanznn=N
27 26 eqeq1d n=Nz=rings=z/𝑠z~QGRSpanznn=0N=0
28 26 oveq2d n=Nz=rings=z/𝑠z~QGRSpanzn0..^n=0..^N
29 27 28 ifbieq2d n=Nz=rings=z/𝑠z~QGRSpanznifn=00..^n=ifN=00..^N
30 29 5 eqtr4di n=Nz=rings=z/𝑠z~QGRSpanznifn=00..^n=W
31 25 30 reseq12d n=Nz=rings=z/𝑠z~QGRSpanznℤRHomsifn=00..^n=ℤRHomUW
32 31 4 eqtr4di n=Nz=rings=z/𝑠z~QGRSpanznℤRHomsifn=00..^n=F
33 24 32 sylan9eqr n=Nz=rings=z/𝑠z~QGRSpanznf=ℤRHomsifn=00..^nf=F
34 33 coeq1d n=Nz=rings=z/𝑠z~QGRSpanznf=ℤRHomsifn=00..^nf=F
35 33 cnveqd n=Nz=rings=z/𝑠z~QGRSpanznf=ℤRHomsifn=00..^nf-1=F-1
36 34 35 coeq12d n=Nz=rings=z/𝑠z~QGRSpanznf=ℤRHomsifn=00..^nff-1=FF-1
37 36 6 eqtr4di n=Nz=rings=z/𝑠z~QGRSpanznf=ℤRHomsifn=00..^nff-1=˙
38 23 37 csbied n=Nz=rings=z/𝑠z~QGRSpanznℤRHomsifn=00..^n/fff-1=˙
39 38 opeq2d n=Nz=rings=z/𝑠z~QGRSpanznndxℤRHomsifn=00..^n/fff-1=ndx˙
40 20 39 oveq12d n=Nz=rings=z/𝑠z~QGRSpanznssSetndxℤRHomsifn=00..^n/fff-1=UsSetndx˙
41 9 40 csbied n=Nz=ringz/𝑠z~QGRSpanzn/sssSetndxℤRHomsifn=00..^n/fff-1=UsSetndx˙
42 8 41 csbied n=Nring/zz/𝑠z~QGRSpanzn/sssSetndxℤRHomsifn=00..^n/fff-1=UsSetndx˙
43 df-zn ℤ/nℤ=n0ring/zz/𝑠z~QGRSpanzn/sssSetndxℤRHomsifn=00..^n/fff-1
44 ovex UsSetndx˙V
45 42 43 44 fvmpt N0/N=UsSetndx˙
46 3 45 eqtrid N0Y=UsSetndx˙