Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } |
2 |
|
4sq.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
4sq.3 |
⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) |
4 |
|
4sq.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
4sq.5 |
⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) |
6 |
|
4sq.6 |
⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } |
7 |
|
4sq.7 |
⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) |
8 |
|
4sq.m |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
9 |
|
4sq.a |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
10 |
|
4sq.b |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
11 |
|
4sq.c |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
12 |
|
4sq.d |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
13 |
|
4sq.e |
⊢ 𝐸 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
14 |
|
4sq.f |
⊢ 𝐹 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
15 |
|
4sq.g |
⊢ 𝐺 = ( ( ( 𝐶 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
16 |
|
4sq.h |
⊢ 𝐻 = ( ( ( 𝐷 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
17 |
|
4sq.r |
⊢ 𝑅 = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) |
18 |
|
4sq.p |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
19 |
6
|
ssrab3 |
⊢ 𝑇 ⊆ ℕ |
20 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
21 |
19 20
|
sseqtri |
⊢ 𝑇 ⊆ ( ℤ≥ ‘ 1 ) |
22 |
1 2 3 4 5 6 7
|
4sqlem13 |
⊢ ( 𝜑 → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) |
23 |
22
|
simpld |
⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
24 |
|
infssuzcl |
⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
25 |
21 23 24
|
sylancr |
⊢ ( 𝜑 → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
26 |
7 25
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ 𝑇 ) |
27 |
19 26
|
sseldi |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
28 |
27
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
29 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
30 |
4 29
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
31 |
28 30
|
zmulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℤ ) |
32 |
9 27 13
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐸 ∈ ℤ ∧ ( ( 𝐴 − 𝐸 ) / 𝑀 ) ∈ ℤ ) ) |
33 |
32
|
simpld |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
34 |
|
zsqcl2 |
⊢ ( 𝐸 ∈ ℤ → ( 𝐸 ↑ 2 ) ∈ ℕ0 ) |
35 |
33 34
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℕ0 ) |
36 |
10 27 14
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐹 ∈ ℤ ∧ ( ( 𝐵 − 𝐹 ) / 𝑀 ) ∈ ℤ ) ) |
37 |
36
|
simpld |
⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
38 |
|
zsqcl2 |
⊢ ( 𝐹 ∈ ℤ → ( 𝐹 ↑ 2 ) ∈ ℕ0 ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℕ0 ) |
40 |
35 39
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℕ0 ) |
41 |
40
|
nn0zd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℤ ) |
42 |
11 27 15
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐺 ∈ ℤ ∧ ( ( 𝐶 − 𝐺 ) / 𝑀 ) ∈ ℤ ) ) |
43 |
42
|
simpld |
⊢ ( 𝜑 → 𝐺 ∈ ℤ ) |
44 |
|
zsqcl2 |
⊢ ( 𝐺 ∈ ℤ → ( 𝐺 ↑ 2 ) ∈ ℕ0 ) |
45 |
43 44
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℕ0 ) |
46 |
12 27 16
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐻 ∈ ℤ ∧ ( ( 𝐷 − 𝐻 ) / 𝑀 ) ∈ ℤ ) ) |
47 |
46
|
simpld |
⊢ ( 𝜑 → 𝐻 ∈ ℤ ) |
48 |
|
zsqcl2 |
⊢ ( 𝐻 ∈ ℤ → ( 𝐻 ↑ 2 ) ∈ ℕ0 ) |
49 |
47 48
|
syl |
⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℕ0 ) |
50 |
45 49
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℕ0 ) |
51 |
50
|
nn0zd |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℤ ) |
52 |
41 51
|
zaddcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℤ ) |
53 |
31 52
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ∈ ℤ ) |
54 |
|
dvdsmul1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑀 ∥ ( 𝑀 · 𝑃 ) ) |
55 |
28 30 54
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∥ ( 𝑀 · 𝑃 ) ) |
56 |
|
zsqcl |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
57 |
9 56
|
syl |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
58 |
|
zsqcl |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
59 |
10 58
|
syl |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
60 |
57 59
|
zaddcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℤ ) |
61 |
60 41
|
zsubcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ∈ ℤ ) |
62 |
|
zsqcl |
⊢ ( 𝐶 ∈ ℤ → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
63 |
11 62
|
syl |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
64 |
|
zsqcl |
⊢ ( 𝐷 ∈ ℤ → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
65 |
12 64
|
syl |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
66 |
63 65
|
zaddcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℤ ) |
67 |
66 51
|
zsubcld |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℤ ) |
68 |
35
|
nn0zd |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℤ ) |
69 |
57 68
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) − ( 𝐸 ↑ 2 ) ) ∈ ℤ ) |
70 |
39
|
nn0zd |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℤ ) |
71 |
59 70
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) − ( 𝐹 ↑ 2 ) ) ∈ ℤ ) |
72 |
9 27 13
|
4sqlem8 |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐴 ↑ 2 ) − ( 𝐸 ↑ 2 ) ) ) |
73 |
10 27 14
|
4sqlem8 |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐵 ↑ 2 ) − ( 𝐹 ↑ 2 ) ) ) |
74 |
28 69 71 72 73
|
dvds2addd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐴 ↑ 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( 𝐹 ↑ 2 ) ) ) ) |
75 |
9
|
zcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
76 |
75
|
sqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
77 |
10
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
78 |
77
|
sqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
79 |
33
|
zcnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
80 |
79
|
sqcld |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
81 |
37
|
zcnd |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
82 |
81
|
sqcld |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℂ ) |
83 |
76 78 80 82
|
addsub4d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( 𝐹 ↑ 2 ) ) ) ) |
84 |
74 83
|
breqtrrd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
85 |
45
|
nn0zd |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℤ ) |
86 |
63 85
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) − ( 𝐺 ↑ 2 ) ) ∈ ℤ ) |
87 |
49
|
nn0zd |
⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℤ ) |
88 |
65 87
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) − ( 𝐻 ↑ 2 ) ) ∈ ℤ ) |
89 |
11 27 15
|
4sqlem8 |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐶 ↑ 2 ) − ( 𝐺 ↑ 2 ) ) ) |
90 |
12 27 16
|
4sqlem8 |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐷 ↑ 2 ) − ( 𝐻 ↑ 2 ) ) ) |
91 |
28 86 88 89 90
|
dvds2addd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐶 ↑ 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( 𝐻 ↑ 2 ) ) ) ) |
92 |
11
|
zcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
93 |
92
|
sqcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
94 |
12
|
zcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
95 |
94
|
sqcld |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
96 |
43
|
zcnd |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
97 |
96
|
sqcld |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℂ ) |
98 |
47
|
zcnd |
⊢ ( 𝜑 → 𝐻 ∈ ℂ ) |
99 |
98
|
sqcld |
⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℂ ) |
100 |
93 95 97 99
|
addsub4d |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = ( ( ( 𝐶 ↑ 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( 𝐻 ↑ 2 ) ) ) ) |
101 |
91 100
|
breqtrrd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
102 |
28 61 67 84 101
|
dvds2addd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
103 |
18
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
104 |
76 78
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
105 |
93 95
|
addcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℂ ) |
106 |
80 82
|
addcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℂ ) |
107 |
97 99
|
addcld |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℂ ) |
108 |
104 105 106 107
|
addsub4d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
109 |
103 108
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
110 |
102 109
|
breqtrrd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
111 |
28 31 53 55 110
|
dvds2subd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝑀 · 𝑃 ) − ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) ) |
112 |
27
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
113 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
114 |
4 113
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
115 |
114
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
116 |
112 115
|
mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℂ ) |
117 |
106 107
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℂ ) |
118 |
116 117
|
nncand |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) − ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) = ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
119 |
111 118
|
breqtrd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
120 |
27
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
121 |
40 50
|
nn0addcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℕ0 ) |
122 |
121
|
nn0zd |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℤ ) |
123 |
|
dvdsval2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℤ ) → ( 𝑀 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ↔ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℤ ) ) |
124 |
28 120 122 123
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ↔ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℤ ) ) |
125 |
119 124
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℤ ) |
126 |
121
|
nn0red |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ) |
127 |
121
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
128 |
27
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
129 |
27
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
130 |
|
divge0 |
⊢ ( ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) → 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ) |
131 |
126 127 128 129 130
|
syl22anc |
⊢ ( 𝜑 → 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ) |
132 |
|
elnn0z |
⊢ ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℕ0 ↔ ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℤ ∧ 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ) ) |
133 |
125 131 132
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℕ0 ) |
134 |
17 133
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |