| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } |
| 2 |
|
4sq.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 3 |
|
4sq.3 |
⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) |
| 4 |
|
4sq.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 5 |
|
4sq.5 |
⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) |
| 6 |
|
4sq.6 |
⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } |
| 7 |
|
4sq.7 |
⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) |
| 8 |
|
4sq.m |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
| 9 |
|
4sq.a |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 10 |
|
4sq.b |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 11 |
|
4sq.c |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
| 12 |
|
4sq.d |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
| 13 |
|
4sq.e |
⊢ 𝐸 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 14 |
|
4sq.f |
⊢ 𝐹 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 15 |
|
4sq.g |
⊢ 𝐺 = ( ( ( 𝐶 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 16 |
|
4sq.h |
⊢ 𝐻 = ( ( ( 𝐷 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 17 |
|
4sq.r |
⊢ 𝑅 = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) |
| 18 |
|
4sq.p |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 19 |
6
|
ssrab3 |
⊢ 𝑇 ⊆ ℕ |
| 20 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 21 |
19 20
|
sseqtri |
⊢ 𝑇 ⊆ ( ℤ≥ ‘ 1 ) |
| 22 |
1 2 3 4 5 6 7
|
4sqlem13 |
⊢ ( 𝜑 → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) |
| 23 |
22
|
simpld |
⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
| 24 |
|
infssuzcl |
⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
| 25 |
21 23 24
|
sylancr |
⊢ ( 𝜑 → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
| 26 |
7 25
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ 𝑇 ) |
| 27 |
19 26
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 28 |
27
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 29 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 30 |
4 29
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 31 |
28 30
|
zmulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℤ ) |
| 32 |
9 27 13
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐸 ∈ ℤ ∧ ( ( 𝐴 − 𝐸 ) / 𝑀 ) ∈ ℤ ) ) |
| 33 |
32
|
simpld |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
| 34 |
|
zsqcl2 |
⊢ ( 𝐸 ∈ ℤ → ( 𝐸 ↑ 2 ) ∈ ℕ0 ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℕ0 ) |
| 36 |
10 27 14
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐹 ∈ ℤ ∧ ( ( 𝐵 − 𝐹 ) / 𝑀 ) ∈ ℤ ) ) |
| 37 |
36
|
simpld |
⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 38 |
|
zsqcl2 |
⊢ ( 𝐹 ∈ ℤ → ( 𝐹 ↑ 2 ) ∈ ℕ0 ) |
| 39 |
37 38
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℕ0 ) |
| 40 |
35 39
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℕ0 ) |
| 41 |
40
|
nn0zd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℤ ) |
| 42 |
11 27 15
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐺 ∈ ℤ ∧ ( ( 𝐶 − 𝐺 ) / 𝑀 ) ∈ ℤ ) ) |
| 43 |
42
|
simpld |
⊢ ( 𝜑 → 𝐺 ∈ ℤ ) |
| 44 |
|
zsqcl2 |
⊢ ( 𝐺 ∈ ℤ → ( 𝐺 ↑ 2 ) ∈ ℕ0 ) |
| 45 |
43 44
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℕ0 ) |
| 46 |
12 27 16
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐻 ∈ ℤ ∧ ( ( 𝐷 − 𝐻 ) / 𝑀 ) ∈ ℤ ) ) |
| 47 |
46
|
simpld |
⊢ ( 𝜑 → 𝐻 ∈ ℤ ) |
| 48 |
|
zsqcl2 |
⊢ ( 𝐻 ∈ ℤ → ( 𝐻 ↑ 2 ) ∈ ℕ0 ) |
| 49 |
47 48
|
syl |
⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℕ0 ) |
| 50 |
45 49
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℕ0 ) |
| 51 |
50
|
nn0zd |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℤ ) |
| 52 |
41 51
|
zaddcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℤ ) |
| 53 |
31 52
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ∈ ℤ ) |
| 54 |
|
dvdsmul1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑀 ∥ ( 𝑀 · 𝑃 ) ) |
| 55 |
28 30 54
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∥ ( 𝑀 · 𝑃 ) ) |
| 56 |
|
zsqcl |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 57 |
9 56
|
syl |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 58 |
|
zsqcl |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 59 |
10 58
|
syl |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 60 |
57 59
|
zaddcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℤ ) |
| 61 |
60 41
|
zsubcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ∈ ℤ ) |
| 62 |
|
zsqcl |
⊢ ( 𝐶 ∈ ℤ → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
| 63 |
11 62
|
syl |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
| 64 |
|
zsqcl |
⊢ ( 𝐷 ∈ ℤ → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
| 65 |
12 64
|
syl |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
| 66 |
63 65
|
zaddcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℤ ) |
| 67 |
66 51
|
zsubcld |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℤ ) |
| 68 |
35
|
nn0zd |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℤ ) |
| 69 |
57 68
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) − ( 𝐸 ↑ 2 ) ) ∈ ℤ ) |
| 70 |
39
|
nn0zd |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℤ ) |
| 71 |
59 70
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) − ( 𝐹 ↑ 2 ) ) ∈ ℤ ) |
| 72 |
9 27 13
|
4sqlem8 |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐴 ↑ 2 ) − ( 𝐸 ↑ 2 ) ) ) |
| 73 |
10 27 14
|
4sqlem8 |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐵 ↑ 2 ) − ( 𝐹 ↑ 2 ) ) ) |
| 74 |
28 69 71 72 73
|
dvds2addd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐴 ↑ 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( 𝐹 ↑ 2 ) ) ) ) |
| 75 |
9
|
zcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 76 |
75
|
sqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 77 |
10
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 78 |
77
|
sqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 79 |
33
|
zcnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 80 |
79
|
sqcld |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
| 81 |
37
|
zcnd |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 82 |
81
|
sqcld |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℂ ) |
| 83 |
76 78 80 82
|
addsub4d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( 𝐹 ↑ 2 ) ) ) ) |
| 84 |
74 83
|
breqtrrd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
| 85 |
45
|
nn0zd |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℤ ) |
| 86 |
63 85
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) − ( 𝐺 ↑ 2 ) ) ∈ ℤ ) |
| 87 |
49
|
nn0zd |
⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℤ ) |
| 88 |
65 87
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) − ( 𝐻 ↑ 2 ) ) ∈ ℤ ) |
| 89 |
11 27 15
|
4sqlem8 |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐶 ↑ 2 ) − ( 𝐺 ↑ 2 ) ) ) |
| 90 |
12 27 16
|
4sqlem8 |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐷 ↑ 2 ) − ( 𝐻 ↑ 2 ) ) ) |
| 91 |
28 86 88 89 90
|
dvds2addd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐶 ↑ 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( 𝐻 ↑ 2 ) ) ) ) |
| 92 |
11
|
zcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 93 |
92
|
sqcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 94 |
12
|
zcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 95 |
94
|
sqcld |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 96 |
43
|
zcnd |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 97 |
96
|
sqcld |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℂ ) |
| 98 |
47
|
zcnd |
⊢ ( 𝜑 → 𝐻 ∈ ℂ ) |
| 99 |
98
|
sqcld |
⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℂ ) |
| 100 |
93 95 97 99
|
addsub4d |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = ( ( ( 𝐶 ↑ 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( 𝐻 ↑ 2 ) ) ) ) |
| 101 |
91 100
|
breqtrrd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 102 |
28 61 67 84 101
|
dvds2addd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
| 103 |
18
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
| 104 |
76 78
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 105 |
93 95
|
addcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℂ ) |
| 106 |
80 82
|
addcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℂ ) |
| 107 |
97 99
|
addcld |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℂ ) |
| 108 |
104 105 106 107
|
addsub4d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
| 109 |
103 108
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
| 110 |
102 109
|
breqtrrd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
| 111 |
28 31 53 55 110
|
dvds2subd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝑀 · 𝑃 ) − ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) ) |
| 112 |
27
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 113 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 114 |
4 113
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 115 |
114
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 116 |
112 115
|
mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℂ ) |
| 117 |
106 107
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℂ ) |
| 118 |
116 117
|
nncand |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) − ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) = ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 119 |
111 118
|
breqtrd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 120 |
27
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 121 |
40 50
|
nn0addcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℕ0 ) |
| 122 |
121
|
nn0zd |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℤ ) |
| 123 |
|
dvdsval2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℤ ) → ( 𝑀 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ↔ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℤ ) ) |
| 124 |
28 120 122 123
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ↔ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℤ ) ) |
| 125 |
119 124
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℤ ) |
| 126 |
121
|
nn0red |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ) |
| 127 |
121
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 128 |
27
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 129 |
27
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
| 130 |
|
divge0 |
⊢ ( ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) → 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ) |
| 131 |
126 127 128 129 130
|
syl22anc |
⊢ ( 𝜑 → 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ) |
| 132 |
|
elnn0z |
⊢ ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℕ0 ↔ ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℤ ∧ 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ) ) |
| 133 |
125 131 132
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℕ0 ) |
| 134 |
17 133
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |