| Step |
Hyp |
Ref |
Expression |
| 1 |
|
baerlem3.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
baerlem3.m |
⊢ − = ( -g ‘ 𝑊 ) |
| 3 |
|
baerlem3.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
baerlem3.s |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 5 |
|
baerlem3.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 6 |
|
baerlem3.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 7 |
|
baerlem3.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 8 |
|
baerlem3.c |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 9 |
|
baerlem3.d |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 10 |
|
baerlem3.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 11 |
|
baerlem3.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 12 |
|
baerlem5a.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 13 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 14 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 15 |
|
eqid |
⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) |
| 16 |
1 12 15 2
|
grpsubval |
⊢ ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) → ( 𝑌 − 𝑍 ) = ( 𝑌 + ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) ) |
| 17 |
13 14 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) = ( 𝑌 + ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) ) |
| 18 |
17
|
sneqd |
⊢ ( 𝜑 → { ( 𝑌 − 𝑍 ) } = { ( 𝑌 + ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) } ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑌 − 𝑍 ) } ) = ( 𝑁 ‘ { ( 𝑌 + ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) } ) ) |
| 20 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 21 |
6 20
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 22 |
1 15
|
lmodvnegcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ 𝑉 ) |
| 23 |
21 14 22
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ 𝑉 ) |
| 24 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 25 |
1 24 5 21 13 14
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 26 |
3 24 21 25 7 8
|
lssneln0 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 27 |
1 5 6 7 13 14 8
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 28 |
27
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 29 |
1 3 5 6 26 13 28
|
lspsnne1 |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 30 |
9
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 31 |
1 3 5 6 11 13 30
|
lspsnne1 |
⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 32 |
1 5 6 7 14 13 31 8
|
lspexchn2 |
⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) |
| 33 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
| 34 |
21 33
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) → 𝑊 ∈ Grp ) |
| 36 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) → 𝑍 ∈ 𝑉 ) |
| 37 |
1 15
|
grpinvinv |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑍 ∈ 𝑉 ) → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) = 𝑍 ) |
| 38 |
35 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) = 𝑍 ) |
| 39 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) → 𝑊 ∈ LMod ) |
| 40 |
1 24 5 21 13 7
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) → ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 42 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) → ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) |
| 43 |
24 15
|
lssvnegcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) |
| 44 |
39 41 42 43
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) |
| 45 |
38 44
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) → 𝑍 ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) |
| 46 |
32 45
|
mtand |
⊢ ( 𝜑 → ¬ ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) |
| 47 |
1 5 6 23 7 13 29 46
|
lspexchn2 |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) } ) ) |
| 48 |
1 15 5
|
lspsnneg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) } ) = ( 𝑁 ‘ { 𝑍 } ) ) |
| 49 |
21 14 48
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) } ) = ( 𝑁 ‘ { 𝑍 } ) ) |
| 50 |
9 49
|
neeqtrrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) } ) ) |
| 51 |
1 3 15
|
grpinvnzcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
| 52 |
34 11 51
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
| 53 |
1 2 3 4 5 6 7 47 50 10 52 12
|
baerlem5b |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑌 + ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) } ) = ( ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) } ) ) ∩ ( ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) ) } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
| 54 |
49
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) } ) ) = ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 55 |
17
|
eqcomd |
⊢ ( 𝜑 → ( 𝑌 + ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) = ( 𝑌 − 𝑍 ) ) |
| 56 |
55
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 − ( 𝑌 + ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) ) = ( 𝑋 − ( 𝑌 − 𝑍 ) ) ) |
| 57 |
56
|
sneqd |
⊢ ( 𝜑 → { ( 𝑋 − ( 𝑌 + ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) ) } = { ( 𝑋 − ( 𝑌 − 𝑍 ) ) } ) |
| 58 |
57
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) ) } ) = ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 − 𝑍 ) ) } ) ) |
| 59 |
58
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) ) } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = ( ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 − 𝑍 ) ) } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 60 |
54 59
|
ineq12d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) } ) ) ∩ ( ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + ( ( invg ‘ 𝑊 ) ‘ 𝑍 ) ) ) } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑍 } ) ) ∩ ( ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 − 𝑍 ) ) } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
| 61 |
19 53 60
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑌 − 𝑍 ) } ) = ( ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑍 } ) ) ∩ ( ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 − 𝑍 ) ) } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |