| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprll |
⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ) |
| 2 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) → 𝐼 < ( ♯ ‘ 𝐴 ) ) |
| 3 |
2
|
anim2i |
⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) |
| 4 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → 𝐼 ∈ ℤ ) |
| 5 |
|
0zd |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → 0 ∈ ℤ ) |
| 6 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 7 |
6
|
nn0zd |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 9 |
|
elfzo |
⊢ ( ( 𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ℤ ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) ) |
| 10 |
4 5 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) ) |
| 11 |
10
|
ad2antrl |
⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) ) |
| 12 |
3 11
|
mpbird |
⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
| 13 |
|
df-3an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) ↔ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) ) |
| 14 |
1 12 13
|
sylanbrc |
⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) ) |
| 15 |
|
ccatval1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ( 𝐴 ‘ 𝐼 ) ) |
| 16 |
15
|
eqcomd |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 17 |
14 16
|
syl |
⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 18 |
17
|
ex |
⊢ ( 0 ≤ 𝐼 → ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 19 |
|
zre |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ ) |
| 20 |
|
0red |
⊢ ( 𝐼 ∈ ℤ → 0 ∈ ℝ ) |
| 21 |
19 20
|
ltnled |
⊢ ( 𝐼 ∈ ℤ → ( 𝐼 < 0 ↔ ¬ 0 ≤ 𝐼 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 < 0 ↔ ¬ 0 ≤ 𝐼 ) ) |
| 23 |
|
simpl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → 𝐴 ∈ Word 𝑉 ) |
| 24 |
23
|
anim1i |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
| 25 |
24
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
| 26 |
|
animorrl |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐼 < 0 ∨ ( ♯ ‘ 𝐴 ) ≤ 𝐼 ) ) |
| 27 |
|
wrdsymb0 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 < 0 ∨ ( ♯ ‘ 𝐴 ) ≤ 𝐼 ) → ( 𝐴 ‘ 𝐼 ) = ∅ ) ) |
| 28 |
25 26 27
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐴 ‘ 𝐼 ) = ∅ ) |
| 29 |
|
ccatcl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
| 30 |
29
|
anim1i |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
| 31 |
30
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
| 32 |
|
animorrl |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐼 < 0 ∨ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ≤ 𝐼 ) ) |
| 33 |
|
wrdsymb0 |
⊢ ( ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 < 0 ∨ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ≤ 𝐼 ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ∅ ) ) |
| 34 |
31 32 33
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ∅ ) |
| 35 |
28 34
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 36 |
35
|
ex |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 < 0 → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 37 |
22 36
|
sylbird |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ¬ 0 ≤ 𝐼 → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 38 |
37
|
com12 |
⊢ ( ¬ 0 ≤ 𝐼 → ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 39 |
38
|
adantrd |
⊢ ( ¬ 0 ≤ 𝐼 → ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 40 |
18 39
|
pm2.61i |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 41 |
|
simprll |
⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ) |
| 42 |
|
id |
⊢ ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 43 |
6
|
nn0red |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 44 |
|
lenlt |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ 𝐼 ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) |
| 45 |
43 19 44
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) |
| 46 |
45
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) |
| 47 |
46
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ≤ 𝐼 ) |
| 48 |
42 47
|
anim12ci |
⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ∧ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 49 |
|
lencl |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 50 |
49
|
nn0zd |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 51 |
|
zaddcl |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
| 52 |
7 50 51
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
| 53 |
52
|
adantr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
| 54 |
|
elfzo |
⊢ ( ( 𝐼 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ∧ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 55 |
4 8 53 54
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ∧ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 56 |
55
|
ad2antrl |
⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ∧ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 57 |
48 56
|
mpbird |
⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 58 |
|
df-3an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ↔ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 59 |
41 57 58
|
sylanbrc |
⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 60 |
|
ccatval2 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) |
| 61 |
60
|
eqcomd |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 62 |
59 61
|
syl |
⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 63 |
62
|
ex |
⊢ ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 64 |
49
|
nn0red |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 65 |
|
readdcl |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℝ ) |
| 66 |
43 64 65
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℝ ) |
| 67 |
|
lenlt |
⊢ ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℝ ∧ 𝐼 ∈ ℝ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 68 |
66 19 67
|
syl2an |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 69 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → 𝐵 ∈ Word 𝑉 ) |
| 70 |
|
simpr |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → 𝐼 ∈ ℤ ) |
| 71 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 72 |
70 71
|
zsubcld |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) |
| 73 |
72
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) |
| 74 |
69 73
|
jca |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐵 ∈ Word 𝑉 ∧ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) ) |
| 75 |
74
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( 𝐵 ∈ Word 𝑉 ∧ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) ) |
| 76 |
43
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 77 |
64
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 78 |
19
|
adantl |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → 𝐼 ∈ ℝ ) |
| 79 |
76 77 78
|
leaddsub2d |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ↔ ( ♯ ‘ 𝐵 ) ≤ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) |
| 80 |
79
|
biimpa |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ♯ ‘ 𝐵 ) ≤ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) |
| 81 |
80
|
olcd |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ( 𝐼 − ( ♯ ‘ 𝐴 ) ) < 0 ∨ ( ♯ ‘ 𝐵 ) ≤ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) |
| 82 |
|
wrdsymb0 |
⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( ( 𝐼 − ( ♯ ‘ 𝐴 ) ) < 0 ∨ ( ♯ ‘ 𝐵 ) ≤ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ∅ ) ) |
| 83 |
75 81 82
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ∅ ) |
| 84 |
30
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
| 85 |
|
ccatlen |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 86 |
85
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 87 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) |
| 88 |
86 87
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ≤ 𝐼 ) |
| 89 |
88
|
olcd |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( 𝐼 < 0 ∨ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ≤ 𝐼 ) ) |
| 90 |
84 89 33
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ∅ ) |
| 91 |
83 90
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 92 |
91
|
ex |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 93 |
68 92
|
sylbird |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 94 |
93
|
com12 |
⊢ ( ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 95 |
94
|
adantrd |
⊢ ( ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 96 |
63 95
|
pm2.61i |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 97 |
40 96
|
ifeqda |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → if ( 𝐼 < ( ♯ ‘ 𝐴 ) , ( 𝐴 ‘ 𝐼 ) , ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 98 |
97
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = if ( 𝐼 < ( ♯ ‘ 𝐴 ) , ( 𝐴 ‘ 𝐼 ) , ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) ) |
| 99 |
98
|
3impa |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = if ( 𝐼 < ( ♯ ‘ 𝐴 ) , ( 𝐴 ‘ 𝐼 ) , ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) ) |