| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chp0mat.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 2 |  | chp0mat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | chp0mat.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | chp0mat.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 5 |  | chp0mat.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 6 |  | chp0mat.m | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 7 |  | chp0mat.0 | ⊢  0   =  ( 0g ‘ 𝐴 ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑁  ∈  Fin ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  CRing ) | 
						
							| 10 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 11 | 3 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 12 | 10 11 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  Ring ) | 
						
							| 13 |  | ringgrp | ⊢ ( 𝐴  ∈  Ring  →  𝐴  ∈  Grp ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 15 | 14 7 | grpidcl | ⊢ ( 𝐴  ∈  Grp  →   0   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 16 | 12 13 15 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →   0   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 17 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 18 | 3 17 | mat0op | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝐴 )  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 19 | 7 18 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   0   =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 20 | 10 19 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →   0   =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →   0   =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 22 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 ) )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 23 |  | simpl | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑗  ∈  𝑁 ) | 
						
							| 27 |  | fvexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 28 | 21 22 24 26 27 | ovmpod | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖  0  𝑗 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 29 | 28 | a1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖  ≠  𝑗  →  ( 𝑖  0  𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 30 | 29 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖  0  𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 32 |  | eqid | ⊢ ( -g ‘ 𝑃 )  =  ( -g ‘ 𝑃 ) | 
						
							| 33 | 1 2 3 31 14 4 17 5 32 | chpdmat | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧   0   ∈  ( Base ‘ 𝐴 ) )  ∧  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖  0  𝑗 )  =  ( 0g ‘ 𝑅 ) ) )  →  ( 𝐶 ‘  0  )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑁  ↦  ( 𝑋 ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘  0  𝑘 ) ) ) ) ) ) | 
						
							| 34 | 8 9 16 30 33 | syl31anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝐶 ‘  0  )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑁  ↦  ( 𝑋 ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘  0  𝑘 ) ) ) ) ) ) | 
						
							| 35 | 20 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑘  ∈  𝑁 )  →   0   =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 36 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑘  ∈  𝑁 )  ∧  ( 𝑥  =  𝑘  ∧  𝑦  =  𝑘 ) )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 37 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑘  ∈  𝑁 )  →  𝑘  ∈  𝑁 ) | 
						
							| 38 |  | fvexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑘  ∈  𝑁 )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 39 | 35 36 37 37 38 | ovmpod | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑘  0  𝑘 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑘  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘  0  𝑘 ) )  =  ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) | 
						
							| 41 | 10 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  Ring ) | 
						
							| 42 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 43 | 2 31 17 42 | ply1scl0 | ⊢ ( 𝑅  ∈  Ring  →  ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 44 | 41 43 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑘  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 46 | 40 45 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑘  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘  0  𝑘 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 47 | 46 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑋 ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘  0  𝑘 ) ) )  =  ( 𝑋 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) ) | 
						
							| 48 | 2 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 49 |  | ringgrp | ⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  Grp ) | 
						
							| 50 | 10 48 49 | 3syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  Grp ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  Grp ) | 
						
							| 52 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 53 | 4 2 52 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 54 | 41 53 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 55 | 51 54 | jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑃  ∈  Grp  ∧  𝑋  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑃  ∈  Grp  ∧  𝑋  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 57 | 52 42 32 | grpsubid1 | ⊢ ( ( 𝑃  ∈  Grp  ∧  𝑋  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑋 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) )  =  𝑋 ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑋 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) )  =  𝑋 ) | 
						
							| 59 | 47 58 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑋 ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘  0  𝑘 ) ) )  =  𝑋 ) | 
						
							| 60 | 59 | mpteq2dva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑘  ∈  𝑁  ↦  ( 𝑋 ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘  0  𝑘 ) ) ) )  =  ( 𝑘  ∈  𝑁  ↦  𝑋 ) ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑁  ↦  ( 𝑋 ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘  0  𝑘 ) ) ) ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑁  ↦  𝑋 ) ) ) | 
						
							| 62 | 2 | ply1crng | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) | 
						
							| 63 | 5 | crngmgp | ⊢ ( 𝑃  ∈  CRing  →  𝐺  ∈  CMnd ) | 
						
							| 64 |  | cmnmnd | ⊢ ( 𝐺  ∈  CMnd  →  𝐺  ∈  Mnd ) | 
						
							| 65 | 62 63 64 | 3syl | ⊢ ( 𝑅  ∈  CRing  →  𝐺  ∈  Mnd ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐺  ∈  Mnd ) | 
						
							| 67 | 10 53 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 69 | 5 52 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝐺 ) | 
						
							| 70 | 68 69 | eleqtrdi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 71 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 72 | 71 6 | gsumconst | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑁  ∈  Fin  ∧  𝑋  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑁  ↦  𝑋 ) )  =  ( ( ♯ ‘ 𝑁 )  ↑  𝑋 ) ) | 
						
							| 73 | 66 8 70 72 | syl3anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑁  ↦  𝑋 ) )  =  ( ( ♯ ‘ 𝑁 )  ↑  𝑋 ) ) | 
						
							| 74 | 34 61 73 | 3eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝐶 ‘  0  )  =  ( ( ♯ ‘ 𝑁 )  ↑  𝑋 ) ) |