Step |
Hyp |
Ref |
Expression |
1 |
|
chp0mat.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
2 |
|
chp0mat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
chp0mat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
4 |
|
chp0mat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
5 |
|
chp0mat.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
6 |
|
chp0mat.m |
⊢ ↑ = ( .g ‘ 𝐺 ) |
7 |
|
chpidmat.i |
⊢ 𝐼 = ( 1r ‘ 𝐴 ) |
8 |
|
chpidmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
9 |
|
chpidmat.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
10 |
|
chpidmat.m |
⊢ − = ( -g ‘ 𝑃 ) |
11 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑁 ∈ Fin ) |
12 |
|
simpr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ CRing ) |
13 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
14 |
3
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
15 |
13 14
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ Ring ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
17 |
16 7
|
ringidcl |
⊢ ( 𝐴 ∈ Ring → 𝐼 ∈ ( Base ‘ 𝐴 ) ) |
18 |
15 17
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐼 ∈ ( Base ‘ 𝐴 ) ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
20 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑁 ∈ Fin ) |
21 |
13
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑅 ∈ Ring ) |
23 |
|
simplrl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ∈ 𝑁 ) |
24 |
|
simplrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ∈ 𝑁 ) |
25 |
3 9 19 20 22 23 24 7
|
mat1ov |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑖 𝐼 𝑗 ) = if ( 𝑖 = 𝑗 , 1 , ( 0g ‘ 𝑅 ) ) ) |
26 |
|
ifnefalse |
⊢ ( 𝑖 ≠ 𝑗 → if ( 𝑖 = 𝑗 , 1 , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → if ( 𝑖 = 𝑗 , 1 , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
28 |
25 27
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑖 𝐼 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
29 |
28
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ≠ 𝑗 → ( 𝑖 𝐼 𝑗 ) = ( 0g ‘ 𝑅 ) ) ) |
30 |
29
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝐼 𝑗 ) = ( 0g ‘ 𝑅 ) ) ) |
31 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
32 |
1 2 3 8 16 4 19 5 31
|
chpdmat |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ ( Base ‘ 𝐴 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝐼 𝑗 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝐶 ‘ 𝐼 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) ) ) ) ) |
33 |
11 12 18 30 32
|
syl31anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐶 ‘ 𝐼 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) ) ) ) ) |
34 |
11
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
35 |
21
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
36 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
37 |
3 9 19 34 35 36 36 7
|
mat1ov |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑘 𝐼 𝑘 ) = if ( 𝑘 = 𝑘 , 1 , ( 0g ‘ 𝑅 ) ) ) |
38 |
|
eqid |
⊢ 𝑘 = 𝑘 |
39 |
38
|
iftruei |
⊢ if ( 𝑘 = 𝑘 , 1 , ( 0g ‘ 𝑅 ) ) = 1 |
40 |
37 39
|
eqtrdi |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑘 𝐼 𝑘 ) = 1 ) |
41 |
40
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) = ( 𝑆 ‘ 1 ) ) |
42 |
41
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) ) = ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) |
43 |
42
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) ) ) = ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) ) |
44 |
43
|
oveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) ) ) |
45 |
2
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
46 |
5
|
crngmgp |
⊢ ( 𝑃 ∈ CRing → 𝐺 ∈ CMnd ) |
47 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
48 |
45 46 47
|
3syl |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Mnd ) |
49 |
48
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐺 ∈ Mnd ) |
50 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
51 |
|
ringgrp |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp ) |
52 |
50 51
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Grp ) |
53 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
54 |
4 2 53
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
55 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
56 |
2 8 9 55
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( 𝑆 ‘ 1 ) = ( 1r ‘ 𝑃 ) ) |
57 |
53 55
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
58 |
50 57
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
59 |
56 58
|
eqeltrd |
⊢ ( 𝑅 ∈ Ring → ( 𝑆 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) |
60 |
52 54 59
|
3jca |
⊢ ( 𝑅 ∈ Ring → ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑆 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) ) |
61 |
13 60
|
syl |
⊢ ( 𝑅 ∈ CRing → ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑆 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) ) |
62 |
61
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑆 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) ) |
63 |
53 31
|
grpsubcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑆 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ∈ ( Base ‘ 𝑃 ) ) |
64 |
62 63
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ∈ ( Base ‘ 𝑃 ) ) |
65 |
5 53
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
66 |
64 65
|
eleqtrdi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ∈ ( Base ‘ 𝐺 ) ) |
67 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
68 |
67 6
|
gsumconst |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) ) |
69 |
10
|
eqcomi |
⊢ ( -g ‘ 𝑃 ) = − |
70 |
69
|
oveqi |
⊢ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) = ( 𝑋 − ( 𝑆 ‘ 1 ) ) |
71 |
70
|
oveq2i |
⊢ ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ 1 ) ) ) |
72 |
68 71
|
eqtrdi |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ 1 ) ) ) ) |
73 |
49 11 66 72
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ 1 ) ) ) ) |
74 |
44 73
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) ) ) ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ 1 ) ) ) ) |
75 |
33 74
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐶 ‘ 𝐼 ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ 1 ) ) ) ) |