Metamath Proof Explorer


Theorem chpidmat

Description: The characteristic polynomial of the identity matrix. (Contributed by AV, 19-Aug-2019)

Ref Expression
Hypotheses chp0mat.c C = N CharPlyMat R
chp0mat.p P = Poly 1 R
chp0mat.a A = N Mat R
chp0mat.x X = var 1 R
chp0mat.g G = mulGrp P
chp0mat.m × ˙ = G
chpidmat.i I = 1 A
chpidmat.s S = algSc P
chpidmat.1 1 ˙ = 1 R
chpidmat.m - ˙ = - P
Assertion chpidmat N Fin R CRing C I = N × ˙ X - ˙ S 1 ˙

Proof

Step Hyp Ref Expression
1 chp0mat.c C = N CharPlyMat R
2 chp0mat.p P = Poly 1 R
3 chp0mat.a A = N Mat R
4 chp0mat.x X = var 1 R
5 chp0mat.g G = mulGrp P
6 chp0mat.m × ˙ = G
7 chpidmat.i I = 1 A
8 chpidmat.s S = algSc P
9 chpidmat.1 1 ˙ = 1 R
10 chpidmat.m - ˙ = - P
11 simpl N Fin R CRing N Fin
12 simpr N Fin R CRing R CRing
13 crngring R CRing R Ring
14 3 matring N Fin R Ring A Ring
15 13 14 sylan2 N Fin R CRing A Ring
16 eqid Base A = Base A
17 16 7 ringidcl A Ring I Base A
18 15 17 syl N Fin R CRing I Base A
19 eqid 0 R = 0 R
20 11 ad2antrr N Fin R CRing i N j N i j N Fin
21 13 adantl N Fin R CRing R Ring
22 21 ad2antrr N Fin R CRing i N j N i j R Ring
23 simplrl N Fin R CRing i N j N i j i N
24 simplrr N Fin R CRing i N j N i j j N
25 3 9 19 20 22 23 24 7 mat1ov N Fin R CRing i N j N i j i I j = if i = j 1 ˙ 0 R
26 ifnefalse i j if i = j 1 ˙ 0 R = 0 R
27 26 adantl N Fin R CRing i N j N i j if i = j 1 ˙ 0 R = 0 R
28 25 27 eqtrd N Fin R CRing i N j N i j i I j = 0 R
29 28 ex N Fin R CRing i N j N i j i I j = 0 R
30 29 ralrimivva N Fin R CRing i N j N i j i I j = 0 R
31 eqid - P = - P
32 1 2 3 8 16 4 19 5 31 chpdmat N Fin R CRing I Base A i N j N i j i I j = 0 R C I = G k N X - P S k I k
33 11 12 18 30 32 syl31anc N Fin R CRing C I = G k N X - P S k I k
34 11 adantr N Fin R CRing k N N Fin
35 21 adantr N Fin R CRing k N R Ring
36 simpr N Fin R CRing k N k N
37 3 9 19 34 35 36 36 7 mat1ov N Fin R CRing k N k I k = if k = k 1 ˙ 0 R
38 eqid k = k
39 38 iftruei if k = k 1 ˙ 0 R = 1 ˙
40 37 39 eqtrdi N Fin R CRing k N k I k = 1 ˙
41 40 fveq2d N Fin R CRing k N S k I k = S 1 ˙
42 41 oveq2d N Fin R CRing k N X - P S k I k = X - P S 1 ˙
43 42 mpteq2dva N Fin R CRing k N X - P S k I k = k N X - P S 1 ˙
44 43 oveq2d N Fin R CRing G k N X - P S k I k = G k N X - P S 1 ˙
45 2 ply1crng R CRing P CRing
46 5 crngmgp P CRing G CMnd
47 cmnmnd G CMnd G Mnd
48 45 46 47 3syl R CRing G Mnd
49 48 adantl N Fin R CRing G Mnd
50 2 ply1ring R Ring P Ring
51 ringgrp P Ring P Grp
52 50 51 syl R Ring P Grp
53 eqid Base P = Base P
54 4 2 53 vr1cl R Ring X Base P
55 eqid 1 P = 1 P
56 2 8 9 55 ply1scl1 R Ring S 1 ˙ = 1 P
57 53 55 ringidcl P Ring 1 P Base P
58 50 57 syl R Ring 1 P Base P
59 56 58 eqeltrd R Ring S 1 ˙ Base P
60 52 54 59 3jca R Ring P Grp X Base P S 1 ˙ Base P
61 13 60 syl R CRing P Grp X Base P S 1 ˙ Base P
62 61 adantl N Fin R CRing P Grp X Base P S 1 ˙ Base P
63 53 31 grpsubcl P Grp X Base P S 1 ˙ Base P X - P S 1 ˙ Base P
64 62 63 syl N Fin R CRing X - P S 1 ˙ Base P
65 5 53 mgpbas Base P = Base G
66 64 65 eleqtrdi N Fin R CRing X - P S 1 ˙ Base G
67 eqid Base G = Base G
68 67 6 gsumconst G Mnd N Fin X - P S 1 ˙ Base G G k N X - P S 1 ˙ = N × ˙ X - P S 1 ˙
69 10 eqcomi - P = - ˙
70 69 oveqi X - P S 1 ˙ = X - ˙ S 1 ˙
71 70 oveq2i N × ˙ X - P S 1 ˙ = N × ˙ X - ˙ S 1 ˙
72 68 71 eqtrdi G Mnd N Fin X - P S 1 ˙ Base G G k N X - P S 1 ˙ = N × ˙ X - ˙ S 1 ˙
73 49 11 66 72 syl3anc N Fin R CRing G k N X - P S 1 ˙ = N × ˙ X - ˙ S 1 ˙
74 44 73 eqtrd N Fin R CRing G k N X - P S k I k = N × ˙ X - ˙ S 1 ˙
75 33 74 eqtrd N Fin R CRing C I = N × ˙ X - ˙ S 1 ˙