| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chp0mat.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 2 |  | chp0mat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | chp0mat.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | chp0mat.x |  |-  X = ( var1 ` R ) | 
						
							| 5 |  | chp0mat.g |  |-  G = ( mulGrp ` P ) | 
						
							| 6 |  | chp0mat.m |  |-  .^ = ( .g ` G ) | 
						
							| 7 |  | chpidmat.i |  |-  I = ( 1r ` A ) | 
						
							| 8 |  | chpidmat.s |  |-  S = ( algSc ` P ) | 
						
							| 9 |  | chpidmat.1 |  |-  .1. = ( 1r ` R ) | 
						
							| 10 |  | chpidmat.m |  |-  .- = ( -g ` P ) | 
						
							| 11 |  | simpl |  |-  ( ( N e. Fin /\ R e. CRing ) -> N e. Fin ) | 
						
							| 12 |  | simpr |  |-  ( ( N e. Fin /\ R e. CRing ) -> R e. CRing ) | 
						
							| 13 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 14 | 3 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 15 | 13 14 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) | 
						
							| 16 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 17 | 16 7 | ringidcl |  |-  ( A e. Ring -> I e. ( Base ` A ) ) | 
						
							| 18 | 15 17 | syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> I e. ( Base ` A ) ) | 
						
							| 19 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 20 | 11 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> N e. Fin ) | 
						
							| 21 | 13 | adantl |  |-  ( ( N e. Fin /\ R e. CRing ) -> R e. Ring ) | 
						
							| 22 | 21 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> R e. Ring ) | 
						
							| 23 |  | simplrl |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> i e. N ) | 
						
							| 24 |  | simplrr |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> j e. N ) | 
						
							| 25 | 3 9 19 20 22 23 24 7 | mat1ov |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> ( i I j ) = if ( i = j , .1. , ( 0g ` R ) ) ) | 
						
							| 26 |  | ifnefalse |  |-  ( i =/= j -> if ( i = j , .1. , ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> if ( i = j , .1. , ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 28 | 25 27 | eqtrd |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> ( i I j ) = ( 0g ` R ) ) | 
						
							| 29 | 28 | ex |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> ( i =/= j -> ( i I j ) = ( 0g ` R ) ) ) | 
						
							| 30 | 29 | ralrimivva |  |-  ( ( N e. Fin /\ R e. CRing ) -> A. i e. N A. j e. N ( i =/= j -> ( i I j ) = ( 0g ` R ) ) ) | 
						
							| 31 |  | eqid |  |-  ( -g ` P ) = ( -g ` P ) | 
						
							| 32 | 1 2 3 8 16 4 19 5 31 | chpdmat |  |-  ( ( ( N e. Fin /\ R e. CRing /\ I e. ( Base ` A ) ) /\ A. i e. N A. j e. N ( i =/= j -> ( i I j ) = ( 0g ` R ) ) ) -> ( C ` I ) = ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` ( k I k ) ) ) ) ) ) | 
						
							| 33 | 11 12 18 30 32 | syl31anc |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( C ` I ) = ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` ( k I k ) ) ) ) ) ) | 
						
							| 34 | 11 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> N e. Fin ) | 
						
							| 35 | 21 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> R e. Ring ) | 
						
							| 36 |  | simpr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> k e. N ) | 
						
							| 37 | 3 9 19 34 35 36 36 7 | mat1ov |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( k I k ) = if ( k = k , .1. , ( 0g ` R ) ) ) | 
						
							| 38 |  | eqid |  |-  k = k | 
						
							| 39 | 38 | iftruei |  |-  if ( k = k , .1. , ( 0g ` R ) ) = .1. | 
						
							| 40 | 37 39 | eqtrdi |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( k I k ) = .1. ) | 
						
							| 41 | 40 | fveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( S ` ( k I k ) ) = ( S ` .1. ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( X ( -g ` P ) ( S ` ( k I k ) ) ) = ( X ( -g ` P ) ( S ` .1. ) ) ) | 
						
							| 43 | 42 | mpteq2dva |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( k e. N |-> ( X ( -g ` P ) ( S ` ( k I k ) ) ) ) = ( k e. N |-> ( X ( -g ` P ) ( S ` .1. ) ) ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` ( k I k ) ) ) ) ) = ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` .1. ) ) ) ) ) | 
						
							| 45 | 2 | ply1crng |  |-  ( R e. CRing -> P e. CRing ) | 
						
							| 46 | 5 | crngmgp |  |-  ( P e. CRing -> G e. CMnd ) | 
						
							| 47 |  | cmnmnd |  |-  ( G e. CMnd -> G e. Mnd ) | 
						
							| 48 | 45 46 47 | 3syl |  |-  ( R e. CRing -> G e. Mnd ) | 
						
							| 49 | 48 | adantl |  |-  ( ( N e. Fin /\ R e. CRing ) -> G e. Mnd ) | 
						
							| 50 | 2 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 51 |  | ringgrp |  |-  ( P e. Ring -> P e. Grp ) | 
						
							| 52 | 50 51 | syl |  |-  ( R e. Ring -> P e. Grp ) | 
						
							| 53 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 54 | 4 2 53 | vr1cl |  |-  ( R e. Ring -> X e. ( Base ` P ) ) | 
						
							| 55 |  | eqid |  |-  ( 1r ` P ) = ( 1r ` P ) | 
						
							| 56 | 2 8 9 55 | ply1scl1 |  |-  ( R e. Ring -> ( S ` .1. ) = ( 1r ` P ) ) | 
						
							| 57 | 53 55 | ringidcl |  |-  ( P e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) | 
						
							| 58 | 50 57 | syl |  |-  ( R e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) | 
						
							| 59 | 56 58 | eqeltrd |  |-  ( R e. Ring -> ( S ` .1. ) e. ( Base ` P ) ) | 
						
							| 60 | 52 54 59 | 3jca |  |-  ( R e. Ring -> ( P e. Grp /\ X e. ( Base ` P ) /\ ( S ` .1. ) e. ( Base ` P ) ) ) | 
						
							| 61 | 13 60 | syl |  |-  ( R e. CRing -> ( P e. Grp /\ X e. ( Base ` P ) /\ ( S ` .1. ) e. ( Base ` P ) ) ) | 
						
							| 62 | 61 | adantl |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( P e. Grp /\ X e. ( Base ` P ) /\ ( S ` .1. ) e. ( Base ` P ) ) ) | 
						
							| 63 | 53 31 | grpsubcl |  |-  ( ( P e. Grp /\ X e. ( Base ` P ) /\ ( S ` .1. ) e. ( Base ` P ) ) -> ( X ( -g ` P ) ( S ` .1. ) ) e. ( Base ` P ) ) | 
						
							| 64 | 62 63 | syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( X ( -g ` P ) ( S ` .1. ) ) e. ( Base ` P ) ) | 
						
							| 65 | 5 53 | mgpbas |  |-  ( Base ` P ) = ( Base ` G ) | 
						
							| 66 | 64 65 | eleqtrdi |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( X ( -g ` P ) ( S ` .1. ) ) e. ( Base ` G ) ) | 
						
							| 67 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 68 | 67 6 | gsumconst |  |-  ( ( G e. Mnd /\ N e. Fin /\ ( X ( -g ` P ) ( S ` .1. ) ) e. ( Base ` G ) ) -> ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` .1. ) ) ) ) = ( ( # ` N ) .^ ( X ( -g ` P ) ( S ` .1. ) ) ) ) | 
						
							| 69 | 10 | eqcomi |  |-  ( -g ` P ) = .- | 
						
							| 70 | 69 | oveqi |  |-  ( X ( -g ` P ) ( S ` .1. ) ) = ( X .- ( S ` .1. ) ) | 
						
							| 71 | 70 | oveq2i |  |-  ( ( # ` N ) .^ ( X ( -g ` P ) ( S ` .1. ) ) ) = ( ( # ` N ) .^ ( X .- ( S ` .1. ) ) ) | 
						
							| 72 | 68 71 | eqtrdi |  |-  ( ( G e. Mnd /\ N e. Fin /\ ( X ( -g ` P ) ( S ` .1. ) ) e. ( Base ` G ) ) -> ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` .1. ) ) ) ) = ( ( # ` N ) .^ ( X .- ( S ` .1. ) ) ) ) | 
						
							| 73 | 49 11 66 72 | syl3anc |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` .1. ) ) ) ) = ( ( # ` N ) .^ ( X .- ( S ` .1. ) ) ) ) | 
						
							| 74 | 44 73 | eqtrd |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` ( k I k ) ) ) ) ) = ( ( # ` N ) .^ ( X .- ( S ` .1. ) ) ) ) | 
						
							| 75 | 33 74 | eqtrd |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( C ` I ) = ( ( # ` N ) .^ ( X .- ( S ` .1. ) ) ) ) |