| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chp0mat.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 2 |  | chp0mat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | chp0mat.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | chp0mat.x |  |-  X = ( var1 ` R ) | 
						
							| 5 |  | chp0mat.g |  |-  G = ( mulGrp ` P ) | 
						
							| 6 |  | chp0mat.m |  |-  .^ = ( .g ` G ) | 
						
							| 7 |  | chp0mat.0 |  |-  .0. = ( 0g ` A ) | 
						
							| 8 |  | simpl |  |-  ( ( N e. Fin /\ R e. CRing ) -> N e. Fin ) | 
						
							| 9 |  | simpr |  |-  ( ( N e. Fin /\ R e. CRing ) -> R e. CRing ) | 
						
							| 10 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 11 | 3 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 12 | 10 11 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) | 
						
							| 13 |  | ringgrp |  |-  ( A e. Ring -> A e. Grp ) | 
						
							| 14 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 15 | 14 7 | grpidcl |  |-  ( A e. Grp -> .0. e. ( Base ` A ) ) | 
						
							| 16 | 12 13 15 | 3syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> .0. e. ( Base ` A ) ) | 
						
							| 17 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 18 | 3 17 | mat0op |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( x e. N , y e. N |-> ( 0g ` R ) ) ) | 
						
							| 19 | 7 18 | eqtrid |  |-  ( ( N e. Fin /\ R e. Ring ) -> .0. = ( x e. N , y e. N |-> ( 0g ` R ) ) ) | 
						
							| 20 | 10 19 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> .0. = ( x e. N , y e. N |-> ( 0g ` R ) ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> .0. = ( x e. N , y e. N |-> ( 0g ` R ) ) ) | 
						
							| 22 |  | eqidd |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ ( x = i /\ y = j ) ) -> ( 0g ` R ) = ( 0g ` R ) ) | 
						
							| 23 |  | simpl |  |-  ( ( i e. N /\ j e. N ) -> i e. N ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> i e. N ) | 
						
							| 25 |  | simpr |  |-  ( ( i e. N /\ j e. N ) -> j e. N ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> j e. N ) | 
						
							| 27 |  | fvexd |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> ( 0g ` R ) e. _V ) | 
						
							| 28 | 21 22 24 26 27 | ovmpod |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> ( i .0. j ) = ( 0g ` R ) ) | 
						
							| 29 | 28 | a1d |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> ( i =/= j -> ( i .0. j ) = ( 0g ` R ) ) ) | 
						
							| 30 | 29 | ralrimivva |  |-  ( ( N e. Fin /\ R e. CRing ) -> A. i e. N A. j e. N ( i =/= j -> ( i .0. j ) = ( 0g ` R ) ) ) | 
						
							| 31 |  | eqid |  |-  ( algSc ` P ) = ( algSc ` P ) | 
						
							| 32 |  | eqid |  |-  ( -g ` P ) = ( -g ` P ) | 
						
							| 33 | 1 2 3 31 14 4 17 5 32 | chpdmat |  |-  ( ( ( N e. Fin /\ R e. CRing /\ .0. e. ( Base ` A ) ) /\ A. i e. N A. j e. N ( i =/= j -> ( i .0. j ) = ( 0g ` R ) ) ) -> ( C ` .0. ) = ( G gsum ( k e. N |-> ( X ( -g ` P ) ( ( algSc ` P ) ` ( k .0. k ) ) ) ) ) ) | 
						
							| 34 | 8 9 16 30 33 | syl31anc |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( C ` .0. ) = ( G gsum ( k e. N |-> ( X ( -g ` P ) ( ( algSc ` P ) ` ( k .0. k ) ) ) ) ) ) | 
						
							| 35 | 20 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> .0. = ( x e. N , y e. N |-> ( 0g ` R ) ) ) | 
						
							| 36 |  | eqidd |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) /\ ( x = k /\ y = k ) ) -> ( 0g ` R ) = ( 0g ` R ) ) | 
						
							| 37 |  | simpr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> k e. N ) | 
						
							| 38 |  | fvexd |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( 0g ` R ) e. _V ) | 
						
							| 39 | 35 36 37 37 38 | ovmpod |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( k .0. k ) = ( 0g ` R ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( ( algSc ` P ) ` ( k .0. k ) ) = ( ( algSc ` P ) ` ( 0g ` R ) ) ) | 
						
							| 41 | 10 | adantl |  |-  ( ( N e. Fin /\ R e. CRing ) -> R e. Ring ) | 
						
							| 42 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 43 | 2 31 17 42 | ply1scl0 |  |-  ( R e. Ring -> ( ( algSc ` P ) ` ( 0g ` R ) ) = ( 0g ` P ) ) | 
						
							| 44 | 41 43 | syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( ( algSc ` P ) ` ( 0g ` R ) ) = ( 0g ` P ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( ( algSc ` P ) ` ( 0g ` R ) ) = ( 0g ` P ) ) | 
						
							| 46 | 40 45 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( ( algSc ` P ) ` ( k .0. k ) ) = ( 0g ` P ) ) | 
						
							| 47 | 46 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( X ( -g ` P ) ( ( algSc ` P ) ` ( k .0. k ) ) ) = ( X ( -g ` P ) ( 0g ` P ) ) ) | 
						
							| 48 | 2 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 49 |  | ringgrp |  |-  ( P e. Ring -> P e. Grp ) | 
						
							| 50 | 10 48 49 | 3syl |  |-  ( R e. CRing -> P e. Grp ) | 
						
							| 51 | 50 | adantl |  |-  ( ( N e. Fin /\ R e. CRing ) -> P e. Grp ) | 
						
							| 52 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 53 | 4 2 52 | vr1cl |  |-  ( R e. Ring -> X e. ( Base ` P ) ) | 
						
							| 54 | 41 53 | syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> X e. ( Base ` P ) ) | 
						
							| 55 | 51 54 | jca |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( P e. Grp /\ X e. ( Base ` P ) ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( P e. Grp /\ X e. ( Base ` P ) ) ) | 
						
							| 57 | 52 42 32 | grpsubid1 |  |-  ( ( P e. Grp /\ X e. ( Base ` P ) ) -> ( X ( -g ` P ) ( 0g ` P ) ) = X ) | 
						
							| 58 | 56 57 | syl |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( X ( -g ` P ) ( 0g ` P ) ) = X ) | 
						
							| 59 | 47 58 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( X ( -g ` P ) ( ( algSc ` P ) ` ( k .0. k ) ) ) = X ) | 
						
							| 60 | 59 | mpteq2dva |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( k e. N |-> ( X ( -g ` P ) ( ( algSc ` P ) ` ( k .0. k ) ) ) ) = ( k e. N |-> X ) ) | 
						
							| 61 | 60 | oveq2d |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( G gsum ( k e. N |-> ( X ( -g ` P ) ( ( algSc ` P ) ` ( k .0. k ) ) ) ) ) = ( G gsum ( k e. N |-> X ) ) ) | 
						
							| 62 | 2 | ply1crng |  |-  ( R e. CRing -> P e. CRing ) | 
						
							| 63 | 5 | crngmgp |  |-  ( P e. CRing -> G e. CMnd ) | 
						
							| 64 |  | cmnmnd |  |-  ( G e. CMnd -> G e. Mnd ) | 
						
							| 65 | 62 63 64 | 3syl |  |-  ( R e. CRing -> G e. Mnd ) | 
						
							| 66 | 65 | adantl |  |-  ( ( N e. Fin /\ R e. CRing ) -> G e. Mnd ) | 
						
							| 67 | 10 53 | syl |  |-  ( R e. CRing -> X e. ( Base ` P ) ) | 
						
							| 68 | 67 | adantl |  |-  ( ( N e. Fin /\ R e. CRing ) -> X e. ( Base ` P ) ) | 
						
							| 69 | 5 52 | mgpbas |  |-  ( Base ` P ) = ( Base ` G ) | 
						
							| 70 | 68 69 | eleqtrdi |  |-  ( ( N e. Fin /\ R e. CRing ) -> X e. ( Base ` G ) ) | 
						
							| 71 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 72 | 71 6 | gsumconst |  |-  ( ( G e. Mnd /\ N e. Fin /\ X e. ( Base ` G ) ) -> ( G gsum ( k e. N |-> X ) ) = ( ( # ` N ) .^ X ) ) | 
						
							| 73 | 66 8 70 72 | syl3anc |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( G gsum ( k e. N |-> X ) ) = ( ( # ` N ) .^ X ) ) | 
						
							| 74 | 34 61 73 | 3eqtrd |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( C ` .0. ) = ( ( # ` N ) .^ X ) ) |