Step |
Hyp |
Ref |
Expression |
1 |
|
chp0mat.c |
|- C = ( N CharPlyMat R ) |
2 |
|
chp0mat.p |
|- P = ( Poly1 ` R ) |
3 |
|
chp0mat.a |
|- A = ( N Mat R ) |
4 |
|
chp0mat.x |
|- X = ( var1 ` R ) |
5 |
|
chp0mat.g |
|- G = ( mulGrp ` P ) |
6 |
|
chp0mat.m |
|- .^ = ( .g ` G ) |
7 |
|
chp0mat.0 |
|- .0. = ( 0g ` A ) |
8 |
|
simpl |
|- ( ( N e. Fin /\ R e. CRing ) -> N e. Fin ) |
9 |
|
simpr |
|- ( ( N e. Fin /\ R e. CRing ) -> R e. CRing ) |
10 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
11 |
3
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
12 |
10 11
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) |
13 |
|
ringgrp |
|- ( A e. Ring -> A e. Grp ) |
14 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
15 |
14 7
|
grpidcl |
|- ( A e. Grp -> .0. e. ( Base ` A ) ) |
16 |
12 13 15
|
3syl |
|- ( ( N e. Fin /\ R e. CRing ) -> .0. e. ( Base ` A ) ) |
17 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
18 |
3 17
|
mat0op |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( x e. N , y e. N |-> ( 0g ` R ) ) ) |
19 |
7 18
|
eqtrid |
|- ( ( N e. Fin /\ R e. Ring ) -> .0. = ( x e. N , y e. N |-> ( 0g ` R ) ) ) |
20 |
10 19
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> .0. = ( x e. N , y e. N |-> ( 0g ` R ) ) ) |
21 |
20
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> .0. = ( x e. N , y e. N |-> ( 0g ` R ) ) ) |
22 |
|
eqidd |
|- ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ ( x = i /\ y = j ) ) -> ( 0g ` R ) = ( 0g ` R ) ) |
23 |
|
simpl |
|- ( ( i e. N /\ j e. N ) -> i e. N ) |
24 |
23
|
adantl |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> i e. N ) |
25 |
|
simpr |
|- ( ( i e. N /\ j e. N ) -> j e. N ) |
26 |
25
|
adantl |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> j e. N ) |
27 |
|
fvexd |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> ( 0g ` R ) e. _V ) |
28 |
21 22 24 26 27
|
ovmpod |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> ( i .0. j ) = ( 0g ` R ) ) |
29 |
28
|
a1d |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> ( i =/= j -> ( i .0. j ) = ( 0g ` R ) ) ) |
30 |
29
|
ralrimivva |
|- ( ( N e. Fin /\ R e. CRing ) -> A. i e. N A. j e. N ( i =/= j -> ( i .0. j ) = ( 0g ` R ) ) ) |
31 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
32 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
33 |
1 2 3 31 14 4 17 5 32
|
chpdmat |
|- ( ( ( N e. Fin /\ R e. CRing /\ .0. e. ( Base ` A ) ) /\ A. i e. N A. j e. N ( i =/= j -> ( i .0. j ) = ( 0g ` R ) ) ) -> ( C ` .0. ) = ( G gsum ( k e. N |-> ( X ( -g ` P ) ( ( algSc ` P ) ` ( k .0. k ) ) ) ) ) ) |
34 |
8 9 16 30 33
|
syl31anc |
|- ( ( N e. Fin /\ R e. CRing ) -> ( C ` .0. ) = ( G gsum ( k e. N |-> ( X ( -g ` P ) ( ( algSc ` P ) ` ( k .0. k ) ) ) ) ) ) |
35 |
20
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> .0. = ( x e. N , y e. N |-> ( 0g ` R ) ) ) |
36 |
|
eqidd |
|- ( ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) /\ ( x = k /\ y = k ) ) -> ( 0g ` R ) = ( 0g ` R ) ) |
37 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> k e. N ) |
38 |
|
fvexd |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( 0g ` R ) e. _V ) |
39 |
35 36 37 37 38
|
ovmpod |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( k .0. k ) = ( 0g ` R ) ) |
40 |
39
|
fveq2d |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( ( algSc ` P ) ` ( k .0. k ) ) = ( ( algSc ` P ) ` ( 0g ` R ) ) ) |
41 |
10
|
adantl |
|- ( ( N e. Fin /\ R e. CRing ) -> R e. Ring ) |
42 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
43 |
2 31 17 42
|
ply1scl0 |
|- ( R e. Ring -> ( ( algSc ` P ) ` ( 0g ` R ) ) = ( 0g ` P ) ) |
44 |
41 43
|
syl |
|- ( ( N e. Fin /\ R e. CRing ) -> ( ( algSc ` P ) ` ( 0g ` R ) ) = ( 0g ` P ) ) |
45 |
44
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( ( algSc ` P ) ` ( 0g ` R ) ) = ( 0g ` P ) ) |
46 |
40 45
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( ( algSc ` P ) ` ( k .0. k ) ) = ( 0g ` P ) ) |
47 |
46
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( X ( -g ` P ) ( ( algSc ` P ) ` ( k .0. k ) ) ) = ( X ( -g ` P ) ( 0g ` P ) ) ) |
48 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
49 |
|
ringgrp |
|- ( P e. Ring -> P e. Grp ) |
50 |
10 48 49
|
3syl |
|- ( R e. CRing -> P e. Grp ) |
51 |
50
|
adantl |
|- ( ( N e. Fin /\ R e. CRing ) -> P e. Grp ) |
52 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
53 |
4 2 52
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
54 |
41 53
|
syl |
|- ( ( N e. Fin /\ R e. CRing ) -> X e. ( Base ` P ) ) |
55 |
51 54
|
jca |
|- ( ( N e. Fin /\ R e. CRing ) -> ( P e. Grp /\ X e. ( Base ` P ) ) ) |
56 |
55
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( P e. Grp /\ X e. ( Base ` P ) ) ) |
57 |
52 42 32
|
grpsubid1 |
|- ( ( P e. Grp /\ X e. ( Base ` P ) ) -> ( X ( -g ` P ) ( 0g ` P ) ) = X ) |
58 |
56 57
|
syl |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( X ( -g ` P ) ( 0g ` P ) ) = X ) |
59 |
47 58
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( X ( -g ` P ) ( ( algSc ` P ) ` ( k .0. k ) ) ) = X ) |
60 |
59
|
mpteq2dva |
|- ( ( N e. Fin /\ R e. CRing ) -> ( k e. N |-> ( X ( -g ` P ) ( ( algSc ` P ) ` ( k .0. k ) ) ) ) = ( k e. N |-> X ) ) |
61 |
60
|
oveq2d |
|- ( ( N e. Fin /\ R e. CRing ) -> ( G gsum ( k e. N |-> ( X ( -g ` P ) ( ( algSc ` P ) ` ( k .0. k ) ) ) ) ) = ( G gsum ( k e. N |-> X ) ) ) |
62 |
2
|
ply1crng |
|- ( R e. CRing -> P e. CRing ) |
63 |
5
|
crngmgp |
|- ( P e. CRing -> G e. CMnd ) |
64 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
65 |
62 63 64
|
3syl |
|- ( R e. CRing -> G e. Mnd ) |
66 |
65
|
adantl |
|- ( ( N e. Fin /\ R e. CRing ) -> G e. Mnd ) |
67 |
10 53
|
syl |
|- ( R e. CRing -> X e. ( Base ` P ) ) |
68 |
67
|
adantl |
|- ( ( N e. Fin /\ R e. CRing ) -> X e. ( Base ` P ) ) |
69 |
5 52
|
mgpbas |
|- ( Base ` P ) = ( Base ` G ) |
70 |
68 69
|
eleqtrdi |
|- ( ( N e. Fin /\ R e. CRing ) -> X e. ( Base ` G ) ) |
71 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
72 |
71 6
|
gsumconst |
|- ( ( G e. Mnd /\ N e. Fin /\ X e. ( Base ` G ) ) -> ( G gsum ( k e. N |-> X ) ) = ( ( # ` N ) .^ X ) ) |
73 |
66 8 70 72
|
syl3anc |
|- ( ( N e. Fin /\ R e. CRing ) -> ( G gsum ( k e. N |-> X ) ) = ( ( # ` N ) .^ X ) ) |
74 |
34 61 73
|
3eqtrd |
|- ( ( N e. Fin /\ R e. CRing ) -> ( C ` .0. ) = ( ( # ` N ) .^ X ) ) |