Step |
Hyp |
Ref |
Expression |
1 |
|
chp0mat.c |
|
2 |
|
chp0mat.p |
|
3 |
|
chp0mat.a |
|
4 |
|
chp0mat.x |
|
5 |
|
chp0mat.g |
|
6 |
|
chp0mat.m |
|
7 |
|
chp0mat.0 |
|
8 |
|
simpl |
|
9 |
|
simpr |
|
10 |
|
crngring |
|
11 |
3
|
matring |
|
12 |
10 11
|
sylan2 |
|
13 |
|
ringgrp |
|
14 |
|
eqid |
|
15 |
14 7
|
grpidcl |
|
16 |
12 13 15
|
3syl |
|
17 |
|
eqid |
|
18 |
3 17
|
mat0op |
|
19 |
7 18
|
eqtrid |
|
20 |
10 19
|
sylan2 |
|
21 |
20
|
adantr |
|
22 |
|
eqidd |
|
23 |
|
simpl |
|
24 |
23
|
adantl |
|
25 |
|
simpr |
|
26 |
25
|
adantl |
|
27 |
|
fvexd |
|
28 |
21 22 24 26 27
|
ovmpod |
|
29 |
28
|
a1d |
|
30 |
29
|
ralrimivva |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
1 2 3 31 14 4 17 5 32
|
chpdmat |
|
34 |
8 9 16 30 33
|
syl31anc |
|
35 |
20
|
adantr |
|
36 |
|
eqidd |
|
37 |
|
simpr |
|
38 |
|
fvexd |
|
39 |
35 36 37 37 38
|
ovmpod |
|
40 |
39
|
fveq2d |
|
41 |
10
|
adantl |
|
42 |
|
eqid |
|
43 |
2 31 17 42
|
ply1scl0 |
|
44 |
41 43
|
syl |
|
45 |
44
|
adantr |
|
46 |
40 45
|
eqtrd |
|
47 |
46
|
oveq2d |
|
48 |
2
|
ply1ring |
|
49 |
|
ringgrp |
|
50 |
10 48 49
|
3syl |
|
51 |
50
|
adantl |
|
52 |
|
eqid |
|
53 |
4 2 52
|
vr1cl |
|
54 |
41 53
|
syl |
|
55 |
51 54
|
jca |
|
56 |
55
|
adantr |
|
57 |
52 42 32
|
grpsubid1 |
|
58 |
56 57
|
syl |
|
59 |
47 58
|
eqtrd |
|
60 |
59
|
mpteq2dva |
|
61 |
60
|
oveq2d |
|
62 |
2
|
ply1crng |
|
63 |
5
|
crngmgp |
|
64 |
|
cmnmnd |
|
65 |
62 63 64
|
3syl |
|
66 |
65
|
adantl |
|
67 |
10 53
|
syl |
|
68 |
67
|
adantl |
|
69 |
5 52
|
mgpbas |
|
70 |
68 69
|
eleqtrdi |
|
71 |
|
eqid |
|
72 |
71 6
|
gsumconst |
|
73 |
66 8 70 72
|
syl3anc |
|
74 |
34 61 73
|
3eqtrd |
|