Step |
Hyp |
Ref |
Expression |
1 |
|
chp0mat.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
2 |
|
chp0mat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
chp0mat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
4 |
|
chp0mat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
5 |
|
chp0mat.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
6 |
|
chp0mat.m |
⊢ ↑ = ( .g ‘ 𝐺 ) |
7 |
|
chpscmat.d |
⊢ 𝐷 = { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑅 ) ) } |
8 |
|
chpscmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
9 |
|
chpscmat.m |
⊢ − = ( -g ‘ 𝑃 ) |
10 |
|
chpscmatgsum.f |
⊢ 𝐹 = ( .g ‘ 𝑃 ) |
11 |
|
chpscmatgsum.h |
⊢ 𝐻 = ( mulGrp ‘ 𝑅 ) |
12 |
|
chpscmatgsum.e |
⊢ 𝐸 = ( .g ‘ 𝐻 ) |
13 |
|
chpscmatgsum.i |
⊢ 𝐼 = ( invg ‘ 𝑅 ) |
14 |
|
chpscmatgsum.s |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
15 |
|
chpscmatgsum.z |
⊢ 𝑍 = ( .g ‘ 𝑅 ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
chpscmatgsumbin |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
17 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
18 |
17
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
19 |
2
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
20 |
18 19
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ LMod ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝑃 ∈ LMod ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
23 |
11 22
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐻 ) |
24 |
11
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝐻 ∈ Mnd ) |
25 |
18 24
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐻 ∈ Mnd ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝐻 ∈ Mnd ) |
27 |
|
fznn0sub |
⊢ ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) → ( ( ♯ ‘ 𝑁 ) − 𝑙 ) ∈ ℕ0 ) |
28 |
27
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ♯ ‘ 𝑁 ) − 𝑙 ) ∈ ℕ0 ) |
29 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
30 |
17 29
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Grp ) |
31 |
30
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Grp ) |
32 |
|
simp2 |
⊢ ( ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) → 𝐽 ∈ 𝑁 ) |
33 |
|
elrabi |
⊢ ( 𝑀 ∈ { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , ( 0g ‘ 𝑅 ) ) } → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
34 |
33 7
|
eleq2s |
⊢ ( 𝑀 ∈ 𝐷 → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
36 |
32 32 35
|
3jca |
⊢ ( ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) → ( 𝐽 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐽 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
38 |
3 22
|
matecl |
⊢ ( ( 𝐽 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ 𝑅 ) ) |
39 |
37 38
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ 𝑅 ) ) |
40 |
22 13
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐽 𝑀 𝐽 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑅 ) ) |
41 |
31 39 40
|
syl2an2r |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑅 ) ) |
42 |
41
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ∈ ( Base ‘ 𝑅 ) ) |
43 |
23 12 26 28 42
|
mulgnn0cld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
44 |
2
|
ply1sca |
⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
45 |
44
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
46 |
45
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
47 |
46
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
49 |
43 48
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
50 |
|
hashcl |
⊢ ( 𝑁 ∈ Fin → ( ♯ ‘ 𝑁 ) ∈ ℕ0 ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( ♯ ‘ 𝑁 ) ∈ ℕ0 ) |
52 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) → 𝑙 ∈ ℤ ) |
53 |
|
bccl |
⊢ ( ( ( ♯ ‘ 𝑁 ) ∈ ℕ0 ∧ 𝑙 ∈ ℤ ) → ( ( ♯ ‘ 𝑁 ) C 𝑙 ) ∈ ℕ0 ) |
54 |
51 52 53
|
syl2an |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ♯ ‘ 𝑁 ) C 𝑙 ) ∈ ℕ0 ) |
55 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
56 |
5 55
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
57 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
58 |
5
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd ) |
59 |
17 57 58
|
3syl |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Mnd ) |
60 |
59
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐺 ∈ Mnd ) |
61 |
60
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝐺 ∈ Mnd ) |
62 |
|
elfznn0 |
⊢ ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) → 𝑙 ∈ ℕ0 ) |
63 |
62
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝑙 ∈ ℕ0 ) |
64 |
4 2 55
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
65 |
18 64
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
67 |
56 6 61 63 66
|
mulgnn0cld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( 𝑙 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
68 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
69 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
70 |
|
eqid |
⊢ ( .g ‘ ( Scalar ‘ 𝑃 ) ) = ( .g ‘ ( Scalar ‘ 𝑃 ) ) |
71 |
55 68 14 69 10 70
|
lmodvsmmulgdi |
⊢ ( ( 𝑃 ∈ LMod ∧ ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( ( ♯ ‘ 𝑁 ) C 𝑙 ) ∈ ℕ0 ∧ ( 𝑙 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) ) → ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) = ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) |
72 |
21 49 54 67 71
|
syl13anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) = ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) |
73 |
45
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( .g ‘ 𝑅 ) = ( .g ‘ ( Scalar ‘ 𝑃 ) ) ) |
74 |
15 73
|
eqtr2id |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( .g ‘ ( Scalar ‘ 𝑃 ) ) = 𝑍 ) |
75 |
74
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( .g ‘ ( Scalar ‘ 𝑃 ) ) = 𝑍 ) |
76 |
75
|
oveqd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) = ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝑍 ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) |
77 |
76
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) · ( 𝑙 ↑ 𝑋 ) ) = ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝑍 ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) |
78 |
72 77
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) ∧ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) = ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝑍 ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) |
79 |
78
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) = ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝑍 ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) |
80 |
79
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝑍 ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) ) |
81 |
16 80
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑛 𝑀 𝑛 ) = ( 𝐽 𝑀 𝐽 ) ) ) → ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑁 ) ) ↦ ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝑍 ( ( ( ♯ ‘ 𝑁 ) − 𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) · ( 𝑙 ↑ 𝑋 ) ) ) ) ) |