| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chp0mat.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 2 |  | chp0mat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | chp0mat.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | chp0mat.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 5 |  | chp0mat.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 6 |  | chp0mat.m | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 7 |  | chpscmat.d | ⊢ 𝐷  =  { 𝑚  ∈  ( Base ‘ 𝐴 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) } | 
						
							| 8 |  | chpscmat.s | ⊢ 𝑆  =  ( algSc ‘ 𝑃 ) | 
						
							| 9 |  | chpscmat.m | ⊢  −   =  ( -g ‘ 𝑃 ) | 
						
							| 10 |  | chpscmatgsum.f | ⊢ 𝐹  =  ( .g ‘ 𝑃 ) | 
						
							| 11 |  | chpscmatgsum.h | ⊢ 𝐻  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 12 |  | chpscmatgsum.e | ⊢ 𝐸  =  ( .g ‘ 𝐻 ) | 
						
							| 13 |  | chpscmatgsum.i | ⊢ 𝐼  =  ( invg ‘ 𝑅 ) | 
						
							| 14 |  | chpscmatgsum.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 15 |  | chpscmatgsum.z | ⊢ 𝑍  =  ( .g ‘ 𝑅 ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | chpscmatgsumbin | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 17 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  Ring ) | 
						
							| 19 | 2 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  LMod ) | 
						
							| 21 | 20 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  𝑃  ∈  LMod ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 23 | 11 22 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝐻 ) | 
						
							| 24 | 11 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  𝐻  ∈  Mnd ) | 
						
							| 25 | 18 24 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐻  ∈  Mnd ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  𝐻  ∈  Mnd ) | 
						
							| 27 |  | fznn0sub | ⊢ ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  →  ( ( ♯ ‘ 𝑁 )  −  𝑙 )  ∈  ℕ0 ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( ♯ ‘ 𝑁 )  −  𝑙 )  ∈  ℕ0 ) | 
						
							| 29 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 30 | 17 29 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Grp ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  Grp ) | 
						
							| 32 |  | simp2 | ⊢ ( ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) )  →  𝐽  ∈  𝑁 ) | 
						
							| 33 |  | elrabi | ⊢ ( 𝑀  ∈  { 𝑚  ∈  ( Base ‘ 𝐴 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) }  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 34 | 33 7 | eleq2s | ⊢ ( 𝑀  ∈  𝐷  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 35 | 34 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) )  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 36 | 32 32 35 | 3jca | ⊢ ( ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) )  →  ( 𝐽  ∈  𝑁  ∧  𝐽  ∈  𝑁  ∧  𝑀  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝐽  ∈  𝑁  ∧  𝐽  ∈  𝑁  ∧  𝑀  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 38 | 3 22 | matecl | ⊢ ( ( 𝐽  ∈  𝑁  ∧  𝐽  ∈  𝑁  ∧  𝑀  ∈  ( Base ‘ 𝐴 ) )  →  ( 𝐽 𝑀 𝐽 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝐽 𝑀 𝐽 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 40 | 22 13 | grpinvcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝐽 𝑀 𝐽 )  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 41 | 31 39 40 | syl2an2r | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 43 | 23 12 26 28 42 | mulgnn0cld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 44 | 2 | ply1sca | ⊢ ( 𝑅  ∈  CRing  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 46 | 45 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 48 | 47 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 49 | 43 48 | eleqtrrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 50 |  | hashcl | ⊢ ( 𝑁  ∈  Fin  →  ( ♯ ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 51 | 50 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( ♯ ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 52 |  | elfzelz | ⊢ ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  →  𝑙  ∈  ℤ ) | 
						
							| 53 |  | bccl | ⊢ ( ( ( ♯ ‘ 𝑁 )  ∈  ℕ0  ∧  𝑙  ∈  ℤ )  →  ( ( ♯ ‘ 𝑁 ) C 𝑙 )  ∈  ℕ0 ) | 
						
							| 54 | 51 52 53 | syl2an | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( ♯ ‘ 𝑁 ) C 𝑙 )  ∈  ℕ0 ) | 
						
							| 55 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 56 | 5 55 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝐺 ) | 
						
							| 57 | 2 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 58 | 5 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  𝐺  ∈  Mnd ) | 
						
							| 59 | 17 57 58 | 3syl | ⊢ ( 𝑅  ∈  CRing  →  𝐺  ∈  Mnd ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐺  ∈  Mnd ) | 
						
							| 61 | 60 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  𝐺  ∈  Mnd ) | 
						
							| 62 |  | elfznn0 | ⊢ ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  →  𝑙  ∈  ℕ0 ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  𝑙  ∈  ℕ0 ) | 
						
							| 64 | 4 2 55 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 65 | 18 64 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 66 | 65 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 67 | 56 6 61 63 66 | mulgnn0cld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( 𝑙  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 68 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 69 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 70 |  | eqid | ⊢ ( .g ‘ ( Scalar ‘ 𝑃 ) )  =  ( .g ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 71 | 55 68 14 69 10 70 | lmodvsmmulgdi | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( ( ♯ ‘ 𝑁 ) C 𝑙 )  ∈  ℕ0  ∧  ( 𝑙  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) )  →  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) )  =  ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) | 
						
							| 72 | 21 49 54 67 71 | syl13anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) )  =  ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) | 
						
							| 73 | 45 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( .g ‘ 𝑅 )  =  ( .g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 74 | 15 73 | eqtr2id | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( .g ‘ ( Scalar ‘ 𝑃 ) )  =  𝑍 ) | 
						
							| 75 | 74 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( .g ‘ ( Scalar ‘ 𝑃 ) )  =  𝑍 ) | 
						
							| 76 | 75 | oveqd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) )  =  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝑍 ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) | 
						
							| 77 | 76 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) )  ·  ( 𝑙  ↑  𝑋 ) )  =  ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝑍 ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) | 
						
							| 78 | 72 77 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) )  =  ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝑍 ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) | 
						
							| 79 | 78 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) )  =  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝑍 ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝑃  Σg  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝑍 ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) ) ) | 
						
							| 81 | 16 80 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝑍 ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) ) ) |