| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chp0mat.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 2 |  | chp0mat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | chp0mat.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | chp0mat.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 5 |  | chp0mat.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 6 |  | chp0mat.m | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 7 |  | chpscmat.d | ⊢ 𝐷  =  { 𝑚  ∈  ( Base ‘ 𝐴 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) } | 
						
							| 8 |  | chpscmat.s | ⊢ 𝑆  =  ( algSc ‘ 𝑃 ) | 
						
							| 9 |  | chpscmat.m | ⊢  −   =  ( -g ‘ 𝑃 ) | 
						
							| 10 |  | chpscmatgsum.f | ⊢ 𝐹  =  ( .g ‘ 𝑃 ) | 
						
							| 11 |  | chpscmatgsum.h | ⊢ 𝐻  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 12 |  | chpscmatgsum.e | ⊢ 𝐸  =  ( .g ‘ 𝐻 ) | 
						
							| 13 |  | chpscmatgsum.i | ⊢ 𝐼  =  ( invg ‘ 𝑅 ) | 
						
							| 14 |  | chpscmatgsum.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 | chpscmat0 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝐶 ‘ 𝑀 )  =  ( ( ♯ ‘ 𝑁 )  ↑  ( 𝑋  −  ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) | 
						
							| 16 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  Ring ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 19 | 4 2 18 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 20 | 17 19 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 22 | 16 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 23 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 24 | 2 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 25 | 2 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 27 | 8 23 24 25 26 18 | asclf | ⊢ ( 𝑅  ∈  Ring  →  𝑆 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 28 | 22 27 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  𝑆 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 29 |  | simpr2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  𝐽  ∈  𝑁 ) | 
						
							| 30 |  | elrabi | ⊢ ( 𝑀  ∈  { 𝑚  ∈  ( Base ‘ 𝐴 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) }  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 31 | 30 | a1d | ⊢ ( 𝑀  ∈  { 𝑚  ∈  ( Base ‘ 𝐴 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) }  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 32 | 31 7 | eleq2s | ⊢ ( 𝑀  ∈  𝐷  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 33 | 32 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 34 | 33 | impcom | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 35 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 36 | 3 35 | matecl | ⊢ ( ( 𝐽  ∈  𝑁  ∧  𝐽  ∈  𝑁  ∧  𝑀  ∈  ( Base ‘ 𝐴 ) )  →  ( 𝐽 𝑀 𝐽 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 37 | 29 29 34 36 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝐽 𝑀 𝐽 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 38 | 2 | ply1sca | ⊢ ( 𝑅  ∈  CRing  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 40 | 39 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 43 | 37 42 | eleqtrrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝐽 𝑀 𝐽 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 44 | 28 43 | ffvelcdmd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 45 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 46 |  | eqid | ⊢ ( invg ‘ 𝑃 )  =  ( invg ‘ 𝑃 ) | 
						
							| 47 | 18 45 46 9 | grpsubval | ⊢ ( ( 𝑋  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) )  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑋  −  ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) )  =  ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) | 
						
							| 48 | 21 44 47 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝑋  −  ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) )  =  ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) | 
						
							| 49 | 17 25 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  LMod ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  𝑃  ∈  LMod ) | 
						
							| 51 | 17 24 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  Ring ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  𝑃  ∈  Ring ) | 
						
							| 53 |  | eqid | ⊢ ( invg ‘ ( Scalar ‘ 𝑃 ) )  =  ( invg ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 54 | 8 23 26 53 46 | asclinvg | ⊢ ( ( 𝑃  ∈  LMod  ∧  𝑃  ∈  Ring  ∧  ( 𝐽 𝑀 𝐽 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) )  →  ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) )  =  ( 𝑆 ‘ ( ( invg ‘ ( Scalar ‘ 𝑃 ) ) ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) | 
						
							| 55 | 50 52 43 54 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) )  =  ( 𝑆 ‘ ( ( invg ‘ ( Scalar ‘ 𝑃 ) ) ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) | 
						
							| 56 | 39 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( invg ‘ 𝑅 )  =  ( invg ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( invg ‘ 𝑅 )  =  ( invg ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 58 | 13 57 | eqtr2id | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( invg ‘ ( Scalar ‘ 𝑃 ) )  =  𝐼 ) | 
						
							| 59 | 58 | fveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( ( invg ‘ ( Scalar ‘ 𝑃 ) ) ‘ ( 𝐽 𝑀 𝐽 ) )  =  ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) | 
						
							| 60 | 59 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝑆 ‘ ( ( invg ‘ ( Scalar ‘ 𝑃 ) ) ‘ ( 𝐽 𝑀 𝐽 ) ) )  =  ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) | 
						
							| 61 | 55 60 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) )  =  ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) )  =  ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) | 
						
							| 63 | 48 62 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝑋  −  ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) )  =  ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( ( ♯ ‘ 𝑁 )  ↑  ( 𝑋  −  ( 𝑆 ‘ ( 𝐽 𝑀 𝐽 ) ) ) )  =  ( ( ♯ ‘ 𝑁 )  ↑  ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ) ) | 
						
							| 65 |  | simplr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  𝑅  ∈  CRing ) | 
						
							| 66 |  | hashcl | ⊢ ( 𝑁  ∈  Fin  →  ( ♯ ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 67 | 66 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( ♯ ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 68 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 69 | 16 68 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Grp ) | 
						
							| 70 | 69 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  𝑅  ∈  Grp ) | 
						
							| 71 | 35 13 | grpinvcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝐽 𝑀 𝐽 )  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 72 | 70 37 71 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 73 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 74 | 2 4 45 73 10 5 6 35 8 11 12 | lply1binomsc | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( ♯ ‘ 𝑁 )  ∈  ℕ0  ∧  ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( ♯ ‘ 𝑁 )  ↑  ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 75 | 65 67 72 74 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( ( ♯ ‘ 𝑁 )  ↑  ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 76 | 2 | ply1assa | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  AssAlg ) | 
						
							| 77 | 76 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  AssAlg ) | 
						
							| 78 | 77 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  𝑃  ∈  AssAlg ) | 
						
							| 79 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 80 | 11 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  𝐻  ∈  Mnd ) | 
						
							| 81 | 17 80 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐻  ∈  Mnd ) | 
						
							| 82 | 81 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  𝐻  ∈  Mnd ) | 
						
							| 83 |  | fznn0sub | ⊢ ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  →  ( ( ♯ ‘ 𝑁 )  −  𝑙 )  ∈  ℕ0 ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( ♯ ‘ 𝑁 )  −  𝑙 )  ∈  ℕ0 ) | 
						
							| 85 | 11 35 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝐻 ) | 
						
							| 86 | 72 85 | eleqtrdi | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 88 | 79 12 82 84 87 | mulgnn0cld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 89 | 40 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 90 | 89 85 | eqtrdi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝐻 ) ) | 
						
							| 91 | 90 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝐻 ) ) | 
						
							| 92 | 88 91 | eleqtrrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 93 | 5 18 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝐺 ) | 
						
							| 94 | 5 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  𝐺  ∈  Mnd ) | 
						
							| 95 | 16 24 94 | 3syl | ⊢ ( 𝑅  ∈  CRing  →  𝐺  ∈  Mnd ) | 
						
							| 96 | 95 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  𝐺  ∈  Mnd ) | 
						
							| 97 |  | elfznn0 | ⊢ ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  →  𝑙  ∈  ℕ0 ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  𝑙  ∈  ℕ0 ) | 
						
							| 99 | 20 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 100 | 93 6 96 98 99 | mulgnn0cld | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( 𝑙  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 101 | 100 | adantlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( 𝑙  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 102 | 8 23 26 18 73 14 | asclmul1 | ⊢ ( ( 𝑃  ∈  AssAlg  ∧  ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( 𝑙  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙  ↑  𝑋 ) )  =  ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) | 
						
							| 103 | 78 92 101 102 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙  ↑  𝑋 ) )  =  ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) | 
						
							| 104 | 103 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  ∧  𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) ) )  →  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙  ↑  𝑋 ) ) )  =  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) ) | 
						
							| 105 | 104 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙  ↑  𝑋 ) ) ) )  =  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) ) ) | 
						
							| 106 | 105 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝑃  Σg  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( 𝑆 ‘ ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑙  ↑  𝑋 ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 107 | 75 106 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( ( ♯ ‘ 𝑁 )  ↑  ( 𝑋 ( +g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 108 | 15 64 107 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐽  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  ( 𝐽 𝑀 𝐽 ) ) )  →  ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑙  ∈  ( 0 ... ( ♯ ‘ 𝑁 ) )  ↦  ( ( ( ♯ ‘ 𝑁 ) C 𝑙 ) 𝐹 ( ( ( ( ♯ ‘ 𝑁 )  −  𝑙 ) 𝐸 ( 𝐼 ‘ ( 𝐽 𝑀 𝐽 ) ) )  ·  ( 𝑙  ↑  𝑋 ) ) ) ) ) ) |