| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chp0mat.c |  | 
						
							| 2 |  | chp0mat.p |  | 
						
							| 3 |  | chp0mat.a |  | 
						
							| 4 |  | chp0mat.x |  | 
						
							| 5 |  | chp0mat.g |  | 
						
							| 6 |  | chp0mat.m |  | 
						
							| 7 |  | chpscmat.d |  | 
						
							| 8 |  | chpscmat.s |  | 
						
							| 9 |  | chpscmat.m |  | 
						
							| 10 |  | chpscmatgsum.f |  | 
						
							| 11 |  | chpscmatgsum.h |  | 
						
							| 12 |  | chpscmatgsum.e |  | 
						
							| 13 |  | chpscmatgsum.i |  | 
						
							| 14 |  | chpscmatgsum.s |  | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 | chpscmat0 |  | 
						
							| 16 |  | crngring |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 4 2 18 | vr1cl |  | 
						
							| 20 | 17 19 | syl |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 | 16 | ad2antlr |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 2 | ply1ring |  | 
						
							| 25 | 2 | ply1lmod |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 8 23 24 25 26 18 | asclf |  | 
						
							| 28 | 22 27 | syl |  | 
						
							| 29 |  | simpr2 |  | 
						
							| 30 |  | elrabi |  | 
						
							| 31 | 30 | a1d |  | 
						
							| 32 | 31 7 | eleq2s |  | 
						
							| 33 | 32 | 3ad2ant1 |  | 
						
							| 34 | 33 | impcom |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 3 35 | matecl |  | 
						
							| 37 | 29 29 34 36 | syl3anc |  | 
						
							| 38 | 2 | ply1sca |  | 
						
							| 39 | 38 | adantl |  | 
						
							| 40 | 39 | eqcomd |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 | 37 42 | eleqtrrd |  | 
						
							| 44 | 28 43 | ffvelcdmd |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 | 18 45 46 9 | grpsubval |  | 
						
							| 48 | 21 44 47 | syl2anc |  | 
						
							| 49 | 17 25 | syl |  | 
						
							| 50 | 49 | adantr |  | 
						
							| 51 | 17 24 | syl |  | 
						
							| 52 | 51 | adantr |  | 
						
							| 53 |  | eqid |  | 
						
							| 54 | 8 23 26 53 46 | asclinvg |  | 
						
							| 55 | 50 52 43 54 | syl3anc |  | 
						
							| 56 | 39 | fveq2d |  | 
						
							| 57 | 56 | adantr |  | 
						
							| 58 | 13 57 | eqtr2id |  | 
						
							| 59 | 58 | fveq1d |  | 
						
							| 60 | 59 | fveq2d |  | 
						
							| 61 | 55 60 | eqtrd |  | 
						
							| 62 | 61 | oveq2d |  | 
						
							| 63 | 48 62 | eqtrd |  | 
						
							| 64 | 63 | oveq2d |  | 
						
							| 65 |  | simplr |  | 
						
							| 66 |  | hashcl |  | 
						
							| 67 | 66 | ad2antrr |  | 
						
							| 68 |  | ringgrp |  | 
						
							| 69 | 16 68 | syl |  | 
						
							| 70 | 69 | ad2antlr |  | 
						
							| 71 | 35 13 | grpinvcl |  | 
						
							| 72 | 70 37 71 | syl2anc |  | 
						
							| 73 |  | eqid |  | 
						
							| 74 | 2 4 45 73 10 5 6 35 8 11 12 | lply1binomsc |  | 
						
							| 75 | 65 67 72 74 | syl3anc |  | 
						
							| 76 | 2 | ply1assa |  | 
						
							| 77 | 76 | adantl |  | 
						
							| 78 | 77 | ad2antrr |  | 
						
							| 79 |  | eqid |  | 
						
							| 80 | 11 | ringmgp |  | 
						
							| 81 | 17 80 | syl |  | 
						
							| 82 | 81 | ad2antrr |  | 
						
							| 83 |  | fznn0sub |  | 
						
							| 84 | 83 | adantl |  | 
						
							| 85 | 11 35 | mgpbas |  | 
						
							| 86 | 72 85 | eleqtrdi |  | 
						
							| 87 | 86 | adantr |  | 
						
							| 88 | 79 12 82 84 87 | mulgnn0cld |  | 
						
							| 89 | 40 | fveq2d |  | 
						
							| 90 | 89 85 | eqtrdi |  | 
						
							| 91 | 90 | ad2antrr |  | 
						
							| 92 | 88 91 | eleqtrrd |  | 
						
							| 93 | 5 18 | mgpbas |  | 
						
							| 94 | 5 | ringmgp |  | 
						
							| 95 | 16 24 94 | 3syl |  | 
						
							| 96 | 95 | ad2antlr |  | 
						
							| 97 |  | elfznn0 |  | 
						
							| 98 | 97 | adantl |  | 
						
							| 99 | 20 | adantr |  | 
						
							| 100 | 93 6 96 98 99 | mulgnn0cld |  | 
						
							| 101 | 100 | adantlr |  | 
						
							| 102 | 8 23 26 18 73 14 | asclmul1 |  | 
						
							| 103 | 78 92 101 102 | syl3anc |  | 
						
							| 104 | 103 | oveq2d |  | 
						
							| 105 | 104 | mpteq2dva |  | 
						
							| 106 | 105 | oveq2d |  | 
						
							| 107 | 75 106 | eqtrd |  | 
						
							| 108 | 15 64 107 | 3eqtrd |  |