Metamath Proof Explorer


Theorem chpscmatgsummon

Description: The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of scaled monomials. (Contributed by AV, 2-Sep-2019)

Ref Expression
Hypotheses chp0mat.c C = N CharPlyMat R
chp0mat.p P = Poly 1 R
chp0mat.a A = N Mat R
chp0mat.x X = var 1 R
chp0mat.g G = mulGrp P
chp0mat.m × ˙ = G
chpscmat.d D = m Base A | c Base R i N j N i m j = if i = j c 0 R
chpscmat.s S = algSc P
chpscmat.m - ˙ = - P
chpscmatgsum.f F = P
chpscmatgsum.h H = mulGrp R
chpscmatgsum.e E = H
chpscmatgsum.i I = inv g R
chpscmatgsum.s · ˙ = P
chpscmatgsum.z Z = R
Assertion chpscmatgsummon N Fin R CRing M D J N n N n M n = J M J C M = P l = 0 N ( N l) Z N l E I J M J · ˙ l × ˙ X

Proof

Step Hyp Ref Expression
1 chp0mat.c C = N CharPlyMat R
2 chp0mat.p P = Poly 1 R
3 chp0mat.a A = N Mat R
4 chp0mat.x X = var 1 R
5 chp0mat.g G = mulGrp P
6 chp0mat.m × ˙ = G
7 chpscmat.d D = m Base A | c Base R i N j N i m j = if i = j c 0 R
8 chpscmat.s S = algSc P
9 chpscmat.m - ˙ = - P
10 chpscmatgsum.f F = P
11 chpscmatgsum.h H = mulGrp R
12 chpscmatgsum.e E = H
13 chpscmatgsum.i I = inv g R
14 chpscmatgsum.s · ˙ = P
15 chpscmatgsum.z Z = R
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 chpscmatgsumbin N Fin R CRing M D J N n N n M n = J M J C M = P l = 0 N ( N l) F N l E I J M J · ˙ l × ˙ X
17 crngring R CRing R Ring
18 17 adantl N Fin R CRing R Ring
19 2 ply1lmod R Ring P LMod
20 18 19 syl N Fin R CRing P LMod
21 20 ad2antrr N Fin R CRing M D J N n N n M n = J M J l 0 N P LMod
22 11 ringmgp R Ring H Mnd
23 18 22 syl N Fin R CRing H Mnd
24 23 ad2antrr N Fin R CRing M D J N n N n M n = J M J l 0 N H Mnd
25 fznn0sub l 0 N N l 0
26 25 adantl N Fin R CRing M D J N n N n M n = J M J l 0 N N l 0
27 ringgrp R Ring R Grp
28 17 27 syl R CRing R Grp
29 28 adantl N Fin R CRing R Grp
30 simp2 M D J N n N n M n = J M J J N
31 elrabi M m Base A | c Base R i N j N i m j = if i = j c 0 R M Base A
32 31 7 eleq2s M D M Base A
33 32 3ad2ant1 M D J N n N n M n = J M J M Base A
34 30 30 33 3jca M D J N n N n M n = J M J J N J N M Base A
35 34 adantl N Fin R CRing M D J N n N n M n = J M J J N J N M Base A
36 eqid Base R = Base R
37 3 36 matecl J N J N M Base A J M J Base R
38 35 37 syl N Fin R CRing M D J N n N n M n = J M J J M J Base R
39 36 13 grpinvcl R Grp J M J Base R I J M J Base R
40 29 38 39 syl2an2r N Fin R CRing M D J N n N n M n = J M J I J M J Base R
41 40 adantr N Fin R CRing M D J N n N n M n = J M J l 0 N I J M J Base R
42 11 36 mgpbas Base R = Base H
43 42 12 mulgnn0cl H Mnd N l 0 I J M J Base R N l E I J M J Base R
44 24 26 41 43 syl3anc N Fin R CRing M D J N n N n M n = J M J l 0 N N l E I J M J Base R
45 2 ply1sca R CRing R = Scalar P
46 45 adantl N Fin R CRing R = Scalar P
47 46 eqcomd N Fin R CRing Scalar P = R
48 47 fveq2d N Fin R CRing Base Scalar P = Base R
49 48 ad2antrr N Fin R CRing M D J N n N n M n = J M J l 0 N Base Scalar P = Base R
50 44 49 eleqtrrd N Fin R CRing M D J N n N n M n = J M J l 0 N N l E I J M J Base Scalar P
51 hashcl N Fin N 0
52 51 ad2antrr N Fin R CRing M D J N n N n M n = J M J N 0
53 elfzelz l 0 N l
54 bccl N 0 l ( N l) 0
55 52 53 54 syl2an N Fin R CRing M D J N n N n M n = J M J l 0 N ( N l) 0
56 2 ply1ring R Ring P Ring
57 5 ringmgp P Ring G Mnd
58 17 56 57 3syl R CRing G Mnd
59 58 adantl N Fin R CRing G Mnd
60 59 ad2antrr N Fin R CRing M D J N n N n M n = J M J l 0 N G Mnd
61 elfznn0 l 0 N l 0
62 61 adantl N Fin R CRing M D J N n N n M n = J M J l 0 N l 0
63 eqid Base P = Base P
64 4 2 63 vr1cl R Ring X Base P
65 18 64 syl N Fin R CRing X Base P
66 65 ad2antrr N Fin R CRing M D J N n N n M n = J M J l 0 N X Base P
67 5 63 mgpbas Base P = Base G
68 67 6 mulgnn0cl G Mnd l 0 X Base P l × ˙ X Base P
69 60 62 66 68 syl3anc N Fin R CRing M D J N n N n M n = J M J l 0 N l × ˙ X Base P
70 eqid Scalar P = Scalar P
71 eqid Base Scalar P = Base Scalar P
72 eqid Scalar P = Scalar P
73 63 70 14 71 10 72 lmodvsmmulgdi P LMod N l E I J M J Base Scalar P ( N l) 0 l × ˙ X Base P ( N l) F N l E I J M J · ˙ l × ˙ X = ( N l) Scalar P N l E I J M J · ˙ l × ˙ X
74 21 50 55 69 73 syl13anc N Fin R CRing M D J N n N n M n = J M J l 0 N ( N l) F N l E I J M J · ˙ l × ˙ X = ( N l) Scalar P N l E I J M J · ˙ l × ˙ X
75 46 fveq2d N Fin R CRing R = Scalar P
76 15 75 syl5req N Fin R CRing Scalar P = Z
77 76 ad2antrr N Fin R CRing M D J N n N n M n = J M J l 0 N Scalar P = Z
78 77 oveqd N Fin R CRing M D J N n N n M n = J M J l 0 N ( N l) Scalar P N l E I J M J = ( N l) Z N l E I J M J
79 78 oveq1d N Fin R CRing M D J N n N n M n = J M J l 0 N ( N l) Scalar P N l E I J M J · ˙ l × ˙ X = ( N l) Z N l E I J M J · ˙ l × ˙ X
80 74 79 eqtrd N Fin R CRing M D J N n N n M n = J M J l 0 N ( N l) F N l E I J M J · ˙ l × ˙ X = ( N l) Z N l E I J M J · ˙ l × ˙ X
81 80 mpteq2dva N Fin R CRing M D J N n N n M n = J M J l 0 N ( N l) F N l E I J M J · ˙ l × ˙ X = l 0 N ( N l) Z N l E I J M J · ˙ l × ˙ X
82 81 oveq2d N Fin R CRing M D J N n N n M n = J M J P l = 0 N ( N l) F N l E I J M J · ˙ l × ˙ X = P l = 0 N ( N l) Z N l E I J M J · ˙ l × ˙ X
83 16 82 eqtrd N Fin R CRing M D J N n N n M n = J M J C M = P l = 0 N ( N l) Z N l E I J M J · ˙ l × ˙ X