Metamath Proof Explorer


Theorem chpscmatgsummon

Description: The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of scaled monomials. (Contributed by AV, 2-Sep-2019)

Ref Expression
Hypotheses chp0mat.c C=NCharPlyMatR
chp0mat.p P=Poly1R
chp0mat.a A=NMatR
chp0mat.x X=var1R
chp0mat.g G=mulGrpP
chp0mat.m ×˙=G
chpscmat.d D=mBaseA|cBaseRiNjNimj=ifi=jc0R
chpscmat.s S=algScP
chpscmat.m -˙=-P
chpscmatgsum.f F=P
chpscmatgsum.h H=mulGrpR
chpscmatgsum.e E=H
chpscmatgsum.i I=invgR
chpscmatgsum.s ·˙=P
chpscmatgsum.z Z=R
Assertion chpscmatgsummon NFinRCRingMDJNnNnMn=JMJCM=Pl=0N(Nl)ZNlEIJMJ·˙l×˙X

Proof

Step Hyp Ref Expression
1 chp0mat.c C=NCharPlyMatR
2 chp0mat.p P=Poly1R
3 chp0mat.a A=NMatR
4 chp0mat.x X=var1R
5 chp0mat.g G=mulGrpP
6 chp0mat.m ×˙=G
7 chpscmat.d D=mBaseA|cBaseRiNjNimj=ifi=jc0R
8 chpscmat.s S=algScP
9 chpscmat.m -˙=-P
10 chpscmatgsum.f F=P
11 chpscmatgsum.h H=mulGrpR
12 chpscmatgsum.e E=H
13 chpscmatgsum.i I=invgR
14 chpscmatgsum.s ·˙=P
15 chpscmatgsum.z Z=R
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 chpscmatgsumbin NFinRCRingMDJNnNnMn=JMJCM=Pl=0N(Nl)FNlEIJMJ·˙l×˙X
17 crngring RCRingRRing
18 17 adantl NFinRCRingRRing
19 2 ply1lmod RRingPLMod
20 18 19 syl NFinRCRingPLMod
21 20 ad2antrr NFinRCRingMDJNnNnMn=JMJl0NPLMod
22 eqid BaseR=BaseR
23 11 22 mgpbas BaseR=BaseH
24 11 ringmgp RRingHMnd
25 18 24 syl NFinRCRingHMnd
26 25 ad2antrr NFinRCRingMDJNnNnMn=JMJl0NHMnd
27 fznn0sub l0NNl0
28 27 adantl NFinRCRingMDJNnNnMn=JMJl0NNl0
29 ringgrp RRingRGrp
30 17 29 syl RCRingRGrp
31 30 adantl NFinRCRingRGrp
32 simp2 MDJNnNnMn=JMJJN
33 elrabi MmBaseA|cBaseRiNjNimj=ifi=jc0RMBaseA
34 33 7 eleq2s MDMBaseA
35 34 3ad2ant1 MDJNnNnMn=JMJMBaseA
36 32 32 35 3jca MDJNnNnMn=JMJJNJNMBaseA
37 36 adantl NFinRCRingMDJNnNnMn=JMJJNJNMBaseA
38 3 22 matecl JNJNMBaseAJMJBaseR
39 37 38 syl NFinRCRingMDJNnNnMn=JMJJMJBaseR
40 22 13 grpinvcl RGrpJMJBaseRIJMJBaseR
41 31 39 40 syl2an2r NFinRCRingMDJNnNnMn=JMJIJMJBaseR
42 41 adantr NFinRCRingMDJNnNnMn=JMJl0NIJMJBaseR
43 23 12 26 28 42 mulgnn0cld NFinRCRingMDJNnNnMn=JMJl0NNlEIJMJBaseR
44 2 ply1sca RCRingR=ScalarP
45 44 adantl NFinRCRingR=ScalarP
46 45 eqcomd NFinRCRingScalarP=R
47 46 fveq2d NFinRCRingBaseScalarP=BaseR
48 47 ad2antrr NFinRCRingMDJNnNnMn=JMJl0NBaseScalarP=BaseR
49 43 48 eleqtrrd NFinRCRingMDJNnNnMn=JMJl0NNlEIJMJBaseScalarP
50 hashcl NFinN0
51 50 ad2antrr NFinRCRingMDJNnNnMn=JMJN0
52 elfzelz l0Nl
53 bccl N0l(Nl)0
54 51 52 53 syl2an NFinRCRingMDJNnNnMn=JMJl0N(Nl)0
55 eqid BaseP=BaseP
56 5 55 mgpbas BaseP=BaseG
57 2 ply1ring RRingPRing
58 5 ringmgp PRingGMnd
59 17 57 58 3syl RCRingGMnd
60 59 adantl NFinRCRingGMnd
61 60 ad2antrr NFinRCRingMDJNnNnMn=JMJl0NGMnd
62 elfznn0 l0Nl0
63 62 adantl NFinRCRingMDJNnNnMn=JMJl0Nl0
64 4 2 55 vr1cl RRingXBaseP
65 18 64 syl NFinRCRingXBaseP
66 65 ad2antrr NFinRCRingMDJNnNnMn=JMJl0NXBaseP
67 56 6 61 63 66 mulgnn0cld NFinRCRingMDJNnNnMn=JMJl0Nl×˙XBaseP
68 eqid ScalarP=ScalarP
69 eqid BaseScalarP=BaseScalarP
70 eqid ScalarP=ScalarP
71 55 68 14 69 10 70 lmodvsmmulgdi PLModNlEIJMJBaseScalarP(Nl)0l×˙XBaseP(Nl)FNlEIJMJ·˙l×˙X=(Nl)ScalarPNlEIJMJ·˙l×˙X
72 21 49 54 67 71 syl13anc NFinRCRingMDJNnNnMn=JMJl0N(Nl)FNlEIJMJ·˙l×˙X=(Nl)ScalarPNlEIJMJ·˙l×˙X
73 45 fveq2d NFinRCRingR=ScalarP
74 15 73 eqtr2id NFinRCRingScalarP=Z
75 74 ad2antrr NFinRCRingMDJNnNnMn=JMJl0NScalarP=Z
76 75 oveqd NFinRCRingMDJNnNnMn=JMJl0N(Nl)ScalarPNlEIJMJ=(Nl)ZNlEIJMJ
77 76 oveq1d NFinRCRingMDJNnNnMn=JMJl0N(Nl)ScalarPNlEIJMJ·˙l×˙X=(Nl)ZNlEIJMJ·˙l×˙X
78 72 77 eqtrd NFinRCRingMDJNnNnMn=JMJl0N(Nl)FNlEIJMJ·˙l×˙X=(Nl)ZNlEIJMJ·˙l×˙X
79 78 mpteq2dva NFinRCRingMDJNnNnMn=JMJl0N(Nl)FNlEIJMJ·˙l×˙X=l0N(Nl)ZNlEIJMJ·˙l×˙X
80 79 oveq2d NFinRCRingMDJNnNnMn=JMJPl=0N(Nl)FNlEIJMJ·˙l×˙X=Pl=0N(Nl)ZNlEIJMJ·˙l×˙X
81 16 80 eqtrd NFinRCRingMDJNnNnMn=JMJCM=Pl=0N(Nl)ZNlEIJMJ·˙l×˙X