| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlkf1o.d | ⊢ 𝐷  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) } | 
						
							| 2 |  | clwwlkf1o.f | ⊢ 𝐹  =  ( 𝑡  ∈  𝐷  ↦  ( 𝑡  prefix  𝑁 ) ) | 
						
							| 3 | 1 2 | clwwlkf | ⊢ ( 𝑁  ∈  ℕ  →  𝐹 : 𝐷 ⟶ ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 4 | 1 2 | clwwlkfv | ⊢ ( 𝑥  ∈  𝐷  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝑥  prefix  𝑁 ) ) | 
						
							| 5 | 1 2 | clwwlkfv | ⊢ ( 𝑦  ∈  𝐷  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦  prefix  𝑁 ) ) | 
						
							| 6 | 4 5 | eqeqan12d | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 ) ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( lastS ‘ 𝑤 )  =  ( lastS ‘ 𝑥 ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤 ‘ 0 )  =  ( 𝑥 ‘ 0 ) ) | 
						
							| 10 | 8 9 | eqeq12d | ⊢ ( 𝑤  =  𝑥  →  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ↔  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) | 
						
							| 11 | 10 1 | elrab2 | ⊢ ( 𝑥  ∈  𝐷  ↔  ( 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑤  =  𝑦  →  ( lastS ‘ 𝑤 )  =  ( lastS ‘ 𝑦 ) ) | 
						
							| 13 |  | fveq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤 ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) | 
						
							| 14 | 12 13 | eqeq12d | ⊢ ( 𝑤  =  𝑦  →  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ↔  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) ) ) | 
						
							| 15 | 14 1 | elrab2 | ⊢ ( 𝑦  ∈  𝐷  ↔  ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) ) ) | 
						
							| 16 | 11 15 | anbi12i | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ↔  ( ( 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  ∧  ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 18 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 19 | 17 18 | wwlknp | ⊢ ( 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑥 ‘ 𝑖 ) ,  ( 𝑥 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 20 | 17 18 | wwlknp | ⊢ ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 21 |  | simprlr | ⊢ ( ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) )  →  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) ) | 
						
							| 22 |  | simpllr | ⊢ ( ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) )  →  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) ) | 
						
							| 23 | 21 22 | eqtr4d | ⊢ ( ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) )  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 24 | 23 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  ∧  ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 ) )  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 25 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 26 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 27 |  | pncan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  𝑁  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 29 | 25 26 28 | sylancl | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 30 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  →  ( ( ♯ ‘ 𝑥 )  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 31 | 30 | eqcomd | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  →  ( ( 𝑁  +  1 )  −  1 )  =  ( ( ♯ ‘ 𝑥 )  −  1 ) ) | 
						
							| 32 | 29 31 | sylan9eqr | ⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ )  →  𝑁  =  ( ( ♯ ‘ 𝑥 )  −  1 ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  prefix  𝑁 )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) ) ) | 
						
							| 34 | 32 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ )  →  ( 𝑦  prefix  𝑁 )  =  ( 𝑦  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) ) ) | 
						
							| 35 | 33 34 | eqeq12d | ⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  ↔  ( 𝑥  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) )  =  ( 𝑦  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) ) ) ) | 
						
							| 36 | 35 | ex | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  ↔  ( 𝑥  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) )  =  ( 𝑦  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) ) ) ) ) | 
						
							| 37 | 36 | ad2antlr | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  ↔  ( 𝑥  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) )  =  ( 𝑦  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) ) ) ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  ↔  ( 𝑥  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) )  =  ( 𝑦  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) ) ) ) ) | 
						
							| 39 | 38 | impcom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  ↔  ( 𝑥  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) )  =  ( 𝑦  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) ) ) ) | 
						
							| 40 | 39 | biimpa | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  ∧  ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 ) )  →  ( 𝑥  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) )  =  ( 𝑦  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) ) ) | 
						
							| 41 |  | simpll | ⊢ ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  →  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 42 |  | simpll | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  →  𝑥  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 43 | 41 42 | anim12ci | ⊢ ( ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 45 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 46 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 47 | 45 46 | jctil | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  ( 0  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 49 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 50 | 49 | lep1d | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≤  ( 𝑁  +  1 ) ) | 
						
							| 51 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ≤  ( ♯ ‘ 𝑥 )  ↔  𝑁  ≤  ( 𝑁  +  1 ) ) ) | 
						
							| 52 | 50 51 | imbitrrid | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ∈  ℕ  →  𝑁  ≤  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 53 | 52 | ad2antlr | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  𝑁  ≤  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) )  →  ( 𝑁  ∈  ℕ  →  𝑁  ≤  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 55 | 54 | impcom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  𝑁  ≤  ( ♯ ‘ 𝑥 ) ) | 
						
							| 56 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ≤  ( ♯ ‘ 𝑦 )  ↔  𝑁  ≤  ( 𝑁  +  1 ) ) ) | 
						
							| 57 | 50 56 | imbitrrid | ⊢ ( ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ∈  ℕ  →  𝑁  ≤  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 58 | 57 | ad2antlr | ⊢ ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  𝑁  ≤  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) )  →  ( 𝑁  ∈  ℕ  →  𝑁  ≤  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 60 | 59 | impcom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  𝑁  ≤  ( ♯ ‘ 𝑦 ) ) | 
						
							| 61 |  | pfxval | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑥  prefix  𝑁 )  =  ( 𝑥  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 62 | 61 | ad2ant2rl | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 0  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑥  prefix  𝑁 )  =  ( 𝑥  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 63 |  | pfxval | ⊢ ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑦  prefix  𝑁 )  =  ( 𝑦  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 64 | 63 | ad2ant2l | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 0  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑦  prefix  𝑁 )  =  ( 𝑦  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 65 | 62 64 | eqeq12d | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 0  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  ↔  ( 𝑥  substr  〈 0 ,  𝑁 〉 )  =  ( 𝑦  substr  〈 0 ,  𝑁 〉 ) ) ) | 
						
							| 66 | 65 | 3adant3 | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 0  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑥 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑦 ) ) )  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  ↔  ( 𝑥  substr  〈 0 ,  𝑁 〉 )  =  ( 𝑦  substr  〈 0 ,  𝑁 〉 ) ) ) | 
						
							| 67 |  | swrdspsleq | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 0  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑥 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑦 ) ) )  →  ( ( 𝑥  substr  〈 0 ,  𝑁 〉 )  =  ( 𝑦  substr  〈 0 ,  𝑁 〉 )  ↔  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 )  =  ( 𝑦 ‘ 𝑖 ) ) ) | 
						
							| 68 | 66 67 | bitrd | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 0  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑥 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑦 ) ) )  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  ↔  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 )  =  ( 𝑦 ‘ 𝑖 ) ) ) | 
						
							| 69 | 44 48 55 60 68 | syl112anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  ↔  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 )  =  ( 𝑦 ‘ 𝑖 ) ) ) | 
						
							| 70 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 𝑁 )  ↔  𝑁  ∈  ℕ ) | 
						
							| 71 | 70 | biimpri | ⊢ ( 𝑁  ∈  ℕ  →  0  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  0  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 73 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑥 ‘ 𝑖 )  =  ( 𝑥 ‘ 0 ) ) | 
						
							| 74 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑦 ‘ 𝑖 )  =  ( 𝑦 ‘ 0 ) ) | 
						
							| 75 | 73 74 | eqeq12d | ⊢ ( 𝑖  =  0  →  ( ( 𝑥 ‘ 𝑖 )  =  ( 𝑦 ‘ 𝑖 )  ↔  ( 𝑥 ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) ) | 
						
							| 76 | 75 | rspcv | ⊢ ( 0  ∈  ( 0 ..^ 𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 )  =  ( 𝑦 ‘ 𝑖 )  →  ( 𝑥 ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) ) | 
						
							| 77 | 72 76 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 )  =  ( 𝑦 ‘ 𝑖 )  →  ( 𝑥 ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) ) | 
						
							| 78 | 69 77 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  ( 𝑥 ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) ) | 
						
							| 79 | 78 | imp | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  ∧  ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 ) )  →  ( 𝑥 ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) | 
						
							| 80 |  | simpr | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  →  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) | 
						
							| 81 |  | simpr | ⊢ ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  →  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) ) | 
						
							| 82 | 80 81 | eqeqan12rd | ⊢ ( ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) )  →  ( ( lastS ‘ 𝑥 )  =  ( lastS ‘ 𝑦 )  ↔  ( 𝑥 ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) ) | 
						
							| 83 | 82 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  ∧  ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 ) )  →  ( ( lastS ‘ 𝑥 )  =  ( lastS ‘ 𝑦 )  ↔  ( 𝑥 ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) ) | 
						
							| 84 | 79 83 | mpbird | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  ∧  ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 ) )  →  ( lastS ‘ 𝑥 )  =  ( lastS ‘ 𝑦 ) ) | 
						
							| 85 | 24 40 84 | jca32 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  ∧  ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 ) )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  ∧  ( ( 𝑥  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) )  =  ( 𝑦  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( lastS ‘ 𝑦 ) ) ) ) | 
						
							| 86 | 42 | adantl | ⊢ ( ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) )  →  𝑥  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 87 | 86 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  𝑥  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 88 | 41 | adantr | ⊢ ( ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) )  →  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 90 |  | 1red | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 91 |  | nngt0 | ⊢ ( 𝑁  ∈  ℕ  →  0  <  𝑁 ) | 
						
							| 92 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 93 | 92 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  <  1 ) | 
						
							| 94 | 49 90 91 93 | addgt0d | ⊢ ( 𝑁  ∈  ℕ  →  0  <  ( 𝑁  +  1 ) ) | 
						
							| 95 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  →  ( 0  <  ( ♯ ‘ 𝑥 )  ↔  0  <  ( 𝑁  +  1 ) ) ) | 
						
							| 96 | 94 95 | imbitrrid | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ∈  ℕ  →  0  <  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 97 | 96 | ad2antlr | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  0  <  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) )  →  ( 𝑁  ∈  ℕ  →  0  <  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 99 | 98 | impcom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  0  <  ( ♯ ‘ 𝑥 ) ) | 
						
							| 100 | 87 89 99 | 3jca | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  0  <  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  ∧  ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 ) )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  0  <  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 102 |  | pfxsuff1eqwrdeq | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  0  <  ( ♯ ‘ 𝑥 ) )  →  ( 𝑥  =  𝑦  ↔  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  ∧  ( ( 𝑥  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) )  =  ( 𝑦  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( lastS ‘ 𝑦 ) ) ) ) ) | 
						
							| 103 | 101 102 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  ∧  ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 ) )  →  ( 𝑥  =  𝑦  ↔  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  ∧  ( ( 𝑥  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) )  =  ( 𝑦  prefix  ( ( ♯ ‘ 𝑥 )  −  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( lastS ‘ 𝑦 ) ) ) ) ) | 
						
							| 104 | 85 103 | mpbird | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) ) )  ∧  ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 ) )  →  𝑥  =  𝑦 ) | 
						
							| 105 | 104 | exp31 | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  ∧  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) ) )  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 106 | 105 | expdcom | ⊢ ( ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  →  ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 107 | 106 | ex | ⊢ ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  →  ( ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 )  →  ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 108 | 107 | 3adant3 | ⊢ ( ( 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 )  →  ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 109 | 20 108 | syl | ⊢ ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 )  →  ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 110 | 109 | imp | ⊢ ( ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  →  ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 111 | 110 | expdcom | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 ) )  →  ( ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 )  →  ( ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 112 | 111 | 3adant3 | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑥 ‘ 𝑖 ) ,  ( 𝑥 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 )  →  ( ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 113 | 19 112 | syl | ⊢ ( 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 )  →  ( ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 114 | 113 | imp31 | ⊢ ( ( ( 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  ∧  ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 115 | 114 | com12 | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) )  ∧  ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑦 )  =  ( 𝑦 ‘ 0 ) ) )  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 116 | 16 115 | biimtrid | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 117 | 116 | imp | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( ( 𝑥  prefix  𝑁 )  =  ( 𝑦  prefix  𝑁 )  →  𝑥  =  𝑦 ) ) | 
						
							| 118 | 7 117 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 119 | 118 | ralrimivva | ⊢ ( 𝑁  ∈  ℕ  →  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 120 |  | dff13 | ⊢ ( 𝐹 : 𝐷 –1-1→ ( 𝑁  ClWWalksN  𝐺 )  ↔  ( 𝐹 : 𝐷 ⟶ ( 𝑁  ClWWalksN  𝐺 )  ∧  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 121 | 3 119 120 | sylanbrc | ⊢ ( 𝑁  ∈  ℕ  →  𝐹 : 𝐷 –1-1→ ( 𝑁  ClWWalksN  𝐺 ) ) |