| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 ∈ ℝ ) |
| 2 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 3 |
|
rplogcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) |
| 4 |
|
2z |
⊢ 2 ∈ ℤ |
| 5 |
|
rpexpcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℝ+ ) |
| 6 |
3 4 5
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℝ+ ) |
| 7 |
|
rpdivcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℝ+ ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ+ ) |
| 8 |
2 6 7
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ+ ) |
| 9 |
8
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
| 10 |
|
divrcnv |
⊢ ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ → ( 𝑛 ∈ ℝ+ ↦ ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) ⇝𝑟 0 ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 𝑛 ∈ ℝ+ ↦ ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) ⇝𝑟 0 ) |
| 12 |
8
|
rpred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ ) |
| 13 |
|
rerpdivcl |
⊢ ( ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ ∧ 𝑛 ∈ ℝ+ ) → ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ∈ ℝ ) |
| 14 |
12 13
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ∈ ℝ ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ∈ ℝ+ ) |
| 16 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 17 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) |
| 18 |
|
0lt1 |
⊢ 0 < 1 |
| 19 |
18
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < 1 ) |
| 20 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 1 < 𝐴 ) |
| 21 |
1 17 16 19 20
|
lttrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
| 22 |
16 21
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 23 |
|
rpre |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ∈ ℝ ) |
| 24 |
|
rpcxpcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝑛 ) ∈ ℝ+ ) |
| 25 |
22 23 24
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝐴 ↑𝑐 𝑛 ) ∈ ℝ+ ) |
| 26 |
15 25
|
rpdivcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ∈ ℝ+ ) |
| 27 |
26
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ∈ ℝ ) |
| 28 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) |
| 29 |
15 28
|
rpmulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 · ( log ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 30 |
29
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 31 |
30
|
resqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ) |
| 32 |
31
|
rehalfcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) ∈ ℝ ) |
| 33 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 34 |
|
rpaddcl |
⊢ ( ( 1 ∈ ℝ+ ∧ ( 𝑛 · ( log ‘ 𝐴 ) ) ∈ ℝ+ ) → ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
| 35 |
33 29 34
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
| 36 |
35
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 37 |
36 32
|
readdcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) + ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) ) ∈ ℝ ) |
| 38 |
30
|
reefcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( exp ‘ ( 𝑛 · ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 39 |
32 35
|
ltaddrp2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) < ( ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) + ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) ) ) |
| 40 |
|
efgt1p2 |
⊢ ( ( 𝑛 · ( log ‘ 𝐴 ) ) ∈ ℝ+ → ( ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) + ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) ) < ( exp ‘ ( 𝑛 · ( log ‘ 𝐴 ) ) ) ) |
| 41 |
29 40
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) + ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) ) < ( exp ‘ ( 𝑛 · ( log ‘ 𝐴 ) ) ) ) |
| 42 |
32 37 38 39 41
|
lttrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) < ( exp ‘ ( 𝑛 · ( log ‘ 𝐴 ) ) ) ) |
| 43 |
23
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ∈ ℝ ) |
| 44 |
43
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ∈ ℂ ) |
| 45 |
44
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
| 46 |
|
2cnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 2 ∈ ℂ ) |
| 47 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℝ+ ) |
| 48 |
47
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 49 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 50 |
49
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 2 ≠ 0 ) |
| 51 |
47
|
rpne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) |
| 52 |
45 46 48 50 51
|
divdiv2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( 𝑛 ↑ 2 ) · ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 2 ) ) |
| 53 |
3
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 55 |
44 54
|
sqmuld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝑛 ↑ 2 ) · ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) |
| 56 |
55
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) = ( ( ( 𝑛 ↑ 2 ) · ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 2 ) ) |
| 57 |
52 56
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) ) |
| 58 |
16
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 60 |
22
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ+ ) |
| 61 |
60
|
rpne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ≠ 0 ) |
| 62 |
59 61 44
|
cxpefd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝐴 ↑𝑐 𝑛 ) = ( exp ‘ ( 𝑛 · ( log ‘ 𝐴 ) ) ) ) |
| 63 |
42 57 62
|
3brtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) < ( 𝐴 ↑𝑐 𝑛 ) ) |
| 64 |
|
rpexpcl |
⊢ ( ( 𝑛 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( 𝑛 ↑ 2 ) ∈ ℝ+ ) |
| 65 |
15 4 64
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 ↑ 2 ) ∈ ℝ+ ) |
| 66 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ+ ) |
| 67 |
65 66
|
rpdivcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) ∈ ℝ+ ) |
| 68 |
67 25 15
|
ltdiv2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) < ( 𝐴 ↑𝑐 𝑛 ) ↔ ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) < ( 𝑛 / ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) ) ) ) |
| 69 |
63 68
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) < ( 𝑛 / ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) ) ) |
| 70 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
| 71 |
65
|
rpne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 ↑ 2 ) ≠ 0 ) |
| 72 |
66
|
rpne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ≠ 0 ) |
| 73 |
44 45 70 71 72
|
divdiv2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) ) = ( ( 𝑛 · ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) / ( 𝑛 ↑ 2 ) ) ) |
| 74 |
44
|
sqvald |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 ↑ 2 ) = ( 𝑛 · 𝑛 ) ) |
| 75 |
74
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 · ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) / ( 𝑛 ↑ 2 ) ) = ( ( 𝑛 · ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) / ( 𝑛 · 𝑛 ) ) ) |
| 76 |
|
rpne0 |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ≠ 0 ) |
| 77 |
76
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ≠ 0 ) |
| 78 |
70 44 44 77 77
|
divcan5d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 · ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) / ( 𝑛 · 𝑛 ) ) = ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) |
| 79 |
73 75 78
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) ) = ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) |
| 80 |
69 79
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) < ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) |
| 81 |
27 14 80
|
ltled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ≤ ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) |
| 82 |
81
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛 ) ) → ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ≤ ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) |
| 83 |
26
|
rpge0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 0 ≤ ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ) |
| 84 |
83
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛 ) ) → 0 ≤ ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ) |
| 85 |
1 1 11 14 27 82 84
|
rlimsqz2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 𝑛 ∈ ℝ+ ↦ ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ) ⇝𝑟 0 ) |