Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 ∈ ℝ ) |
2 |
|
2rp |
⊢ 2 ∈ ℝ+ |
3 |
|
rplogcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) |
4 |
|
2z |
⊢ 2 ∈ ℤ |
5 |
|
rpexpcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℝ+ ) |
6 |
3 4 5
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℝ+ ) |
7 |
|
rpdivcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℝ+ ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ+ ) |
8 |
2 6 7
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ+ ) |
9 |
8
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
10 |
|
divrcnv |
⊢ ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ → ( 𝑛 ∈ ℝ+ ↦ ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) ⇝𝑟 0 ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 𝑛 ∈ ℝ+ ↦ ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) ⇝𝑟 0 ) |
12 |
8
|
rpred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ ) |
13 |
|
rerpdivcl |
⊢ ( ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ ∧ 𝑛 ∈ ℝ+ ) → ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ∈ ℝ ) |
14 |
12 13
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ∈ ℝ ) |
15 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ∈ ℝ+ ) |
16 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
17 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) |
18 |
|
0lt1 |
⊢ 0 < 1 |
19 |
18
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < 1 ) |
20 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 1 < 𝐴 ) |
21 |
1 17 16 19 20
|
lttrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
22 |
16 21
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
23 |
|
rpre |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ∈ ℝ ) |
24 |
|
rpcxpcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝑛 ) ∈ ℝ+ ) |
25 |
22 23 24
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝐴 ↑𝑐 𝑛 ) ∈ ℝ+ ) |
26 |
15 25
|
rpdivcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ∈ ℝ+ ) |
27 |
26
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ∈ ℝ ) |
28 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) |
29 |
15 28
|
rpmulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 · ( log ‘ 𝐴 ) ) ∈ ℝ+ ) |
30 |
29
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
31 |
30
|
resqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ) |
32 |
31
|
rehalfcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) ∈ ℝ ) |
33 |
|
1rp |
⊢ 1 ∈ ℝ+ |
34 |
|
rpaddcl |
⊢ ( ( 1 ∈ ℝ+ ∧ ( 𝑛 · ( log ‘ 𝐴 ) ) ∈ ℝ+ ) → ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
35 |
33 29 34
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
36 |
35
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
37 |
36 32
|
readdcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) + ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) ) ∈ ℝ ) |
38 |
30
|
reefcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( exp ‘ ( 𝑛 · ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
39 |
32 35
|
ltaddrp2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) < ( ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) + ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) ) ) |
40 |
|
efgt1p2 |
⊢ ( ( 𝑛 · ( log ‘ 𝐴 ) ) ∈ ℝ+ → ( ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) + ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) ) < ( exp ‘ ( 𝑛 · ( log ‘ 𝐴 ) ) ) ) |
41 |
29 40
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 1 + ( 𝑛 · ( log ‘ 𝐴 ) ) ) + ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) ) < ( exp ‘ ( 𝑛 · ( log ‘ 𝐴 ) ) ) ) |
42 |
32 37 38 39 41
|
lttrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) < ( exp ‘ ( 𝑛 · ( log ‘ 𝐴 ) ) ) ) |
43 |
23
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ∈ ℝ ) |
44 |
43
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ∈ ℂ ) |
45 |
44
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
46 |
|
2cnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 2 ∈ ℂ ) |
47 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℝ+ ) |
48 |
47
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
49 |
|
2ne0 |
⊢ 2 ≠ 0 |
50 |
49
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 2 ≠ 0 ) |
51 |
47
|
rpne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) |
52 |
45 46 48 50 51
|
divdiv2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( 𝑛 ↑ 2 ) · ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 2 ) ) |
53 |
3
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
54 |
53
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
55 |
44 54
|
sqmuld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝑛 ↑ 2 ) · ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) |
56 |
55
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) = ( ( ( 𝑛 ↑ 2 ) · ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 2 ) ) |
57 |
52 56
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( 𝑛 · ( log ‘ 𝐴 ) ) ↑ 2 ) / 2 ) ) |
58 |
16
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℂ ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
60 |
22
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ+ ) |
61 |
60
|
rpne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ≠ 0 ) |
62 |
59 61 44
|
cxpefd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝐴 ↑𝑐 𝑛 ) = ( exp ‘ ( 𝑛 · ( log ‘ 𝐴 ) ) ) ) |
63 |
42 57 62
|
3brtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) < ( 𝐴 ↑𝑐 𝑛 ) ) |
64 |
|
rpexpcl |
⊢ ( ( 𝑛 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( 𝑛 ↑ 2 ) ∈ ℝ+ ) |
65 |
15 4 64
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 ↑ 2 ) ∈ ℝ+ ) |
66 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℝ+ ) |
67 |
65 66
|
rpdivcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) ∈ ℝ+ ) |
68 |
67 25 15
|
ltdiv2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) < ( 𝐴 ↑𝑐 𝑛 ) ↔ ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) < ( 𝑛 / ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) ) ) ) |
69 |
63 68
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) < ( 𝑛 / ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) ) ) |
70 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
71 |
65
|
rpne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 ↑ 2 ) ≠ 0 ) |
72 |
66
|
rpne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ≠ 0 ) |
73 |
44 45 70 71 72
|
divdiv2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) ) = ( ( 𝑛 · ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) / ( 𝑛 ↑ 2 ) ) ) |
74 |
44
|
sqvald |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 ↑ 2 ) = ( 𝑛 · 𝑛 ) ) |
75 |
74
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 · ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) / ( 𝑛 ↑ 2 ) ) = ( ( 𝑛 · ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) / ( 𝑛 · 𝑛 ) ) ) |
76 |
|
rpne0 |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ≠ 0 ) |
77 |
76
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ≠ 0 ) |
78 |
70 44 44 77 77
|
divcan5d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑛 · ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) / ( 𝑛 · 𝑛 ) ) = ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) |
79 |
73 75 78
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( ( 𝑛 ↑ 2 ) / ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) ) ) = ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) |
80 |
69 79
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) < ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) |
81 |
27 14 80
|
ltled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ≤ ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) |
82 |
81
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛 ) ) → ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ≤ ( ( 2 / ( ( log ‘ 𝐴 ) ↑ 2 ) ) / 𝑛 ) ) |
83 |
26
|
rpge0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑛 ∈ ℝ+ ) → 0 ≤ ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ) |
84 |
83
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛 ) ) → 0 ≤ ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ) |
85 |
1 1 11 14 27 82 84
|
rlimsqz2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 𝑛 ∈ ℝ+ ↦ ( 𝑛 / ( 𝐴 ↑𝑐 𝑛 ) ) ) ⇝𝑟 0 ) |