Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
|
2 |
|
2rp |
|
3 |
|
rplogcl |
|
4 |
|
2z |
|
5 |
|
rpexpcl |
|
6 |
3 4 5
|
sylancl |
|
7 |
|
rpdivcl |
|
8 |
2 6 7
|
sylancr |
|
9 |
8
|
rpcnd |
|
10 |
|
divrcnv |
|
11 |
9 10
|
syl |
|
12 |
8
|
rpred |
|
13 |
|
rerpdivcl |
|
14 |
12 13
|
sylan |
|
15 |
|
simpr |
|
16 |
|
simpl |
|
17 |
|
1red |
|
18 |
|
0lt1 |
|
19 |
18
|
a1i |
|
20 |
|
simpr |
|
21 |
1 17 16 19 20
|
lttrd |
|
22 |
16 21
|
elrpd |
|
23 |
|
rpre |
|
24 |
|
rpcxpcl |
|
25 |
22 23 24
|
syl2an |
|
26 |
15 25
|
rpdivcld |
|
27 |
26
|
rpred |
|
28 |
3
|
adantr |
|
29 |
15 28
|
rpmulcld |
|
30 |
29
|
rpred |
|
31 |
30
|
resqcld |
|
32 |
31
|
rehalfcld |
|
33 |
|
1rp |
|
34 |
|
rpaddcl |
|
35 |
33 29 34
|
sylancr |
|
36 |
35
|
rpred |
|
37 |
36 32
|
readdcld |
|
38 |
30
|
reefcld |
|
39 |
32 35
|
ltaddrp2d |
|
40 |
|
efgt1p2 |
|
41 |
29 40
|
syl |
|
42 |
32 37 38 39 41
|
lttrd |
|
43 |
23
|
adantl |
|
44 |
43
|
recnd |
|
45 |
44
|
sqcld |
|
46 |
|
2cnd |
|
47 |
6
|
adantr |
|
48 |
47
|
rpcnd |
|
49 |
|
2ne0 |
|
50 |
49
|
a1i |
|
51 |
47
|
rpne0d |
|
52 |
45 46 48 50 51
|
divdiv2d |
|
53 |
3
|
rpcnd |
|
54 |
53
|
adantr |
|
55 |
44 54
|
sqmuld |
|
56 |
55
|
oveq1d |
|
57 |
52 56
|
eqtr4d |
|
58 |
16
|
recnd |
|
59 |
58
|
adantr |
|
60 |
22
|
adantr |
|
61 |
60
|
rpne0d |
|
62 |
59 61 44
|
cxpefd |
|
63 |
42 57 62
|
3brtr4d |
|
64 |
|
rpexpcl |
|
65 |
15 4 64
|
sylancl |
|
66 |
8
|
adantr |
|
67 |
65 66
|
rpdivcld |
|
68 |
67 25 15
|
ltdiv2d |
|
69 |
63 68
|
mpbid |
|
70 |
9
|
adantr |
|
71 |
65
|
rpne0d |
|
72 |
66
|
rpne0d |
|
73 |
44 45 70 71 72
|
divdiv2d |
|
74 |
44
|
sqvald |
|
75 |
74
|
oveq2d |
|
76 |
|
rpne0 |
|
77 |
76
|
adantl |
|
78 |
70 44 44 77 77
|
divcan5d |
|
79 |
73 75 78
|
3eqtrd |
|
80 |
69 79
|
breqtrd |
|
81 |
27 14 80
|
ltled |
|
82 |
81
|
adantrr |
|
83 |
26
|
rpge0d |
|
84 |
83
|
adantrr |
|
85 |
1 1 11 14 27 82 84
|
rlimsqz2 |
|