Metamath Proof Explorer


Theorem cxp2lim

Description: Any power grows slower than any exponential with base greater than 1 . (Contributed by Mario Carneiro, 18-Sep-2014)

Ref Expression
Assertion cxp2lim AB1<Bn+nABn0

Proof

Step Hyp Ref Expression
1 1re 1
2 elicopnf 1n1+∞n1n
3 1 2 ax-mp n1+∞n1n
4 3 simplbi n1+∞n
5 0red n1+∞0
6 1red n1+∞1
7 0lt1 0<1
8 7 a1i n1+∞0<1
9 3 simprbi n1+∞1n
10 5 6 4 8 9 ltletrd n1+∞0<n
11 4 10 elrpd n1+∞n+
12 11 ssriv 1+∞+
13 resmpt 1+∞+n+nABn1+∞=n1+∞nABn
14 12 13 ax-mp n+nABn1+∞=n1+∞nABn
15 0red AB1<B0
16 12 a1i AB1<B1+∞+
17 rpre n+n
18 17 adantl AB1<Bn+n
19 rpge0 n+0n
20 19 adantl AB1<Bn+0n
21 simpl2 AB1<Bn+B
22 0red AB1<Bn+0
23 1red AB1<Bn+1
24 7 a1i AB1<Bn+0<1
25 simpl3 AB1<Bn+1<B
26 22 23 21 24 25 lttrd AB1<Bn+0<B
27 21 26 elrpd AB1<Bn+B+
28 27 18 rpcxpcld AB1<Bn+Bn+
29 simp1 AB1<BA
30 ifcl A1if1AA1
31 29 1 30 sylancl AB1<Bif1AA1
32 1red AB1<B1
33 7 a1i AB1<B0<1
34 max1 1A1if1AA1
35 1 29 34 sylancr AB1<B1if1AA1
36 15 32 31 33 35 ltletrd AB1<B0<if1AA1
37 31 36 elrpd AB1<Bif1AA1+
38 37 rprecred AB1<B1if1AA1
39 38 adantr AB1<Bn+1if1AA1
40 28 39 rpcxpcld AB1<Bn+Bn1if1AA1+
41 31 recnd AB1<Bif1AA1
42 41 adantr AB1<Bn+if1AA1
43 18 20 40 42 divcxpd AB1<Bn+nBn1if1AA1if1AA1=nif1AA1Bn1if1AA1if1AA1
44 37 adantr AB1<Bn+if1AA1+
45 44 rpne0d AB1<Bn+if1AA10
46 42 45 recid2d AB1<Bn+1if1AA1if1AA1=1
47 46 oveq2d AB1<Bn+Bn1if1AA1if1AA1=Bn1
48 28 39 42 cxpmuld AB1<Bn+Bn1if1AA1if1AA1=Bn1if1AA1if1AA1
49 28 rpcnd AB1<Bn+Bn
50 49 cxp1d AB1<Bn+Bn1=Bn
51 47 48 50 3eqtr3d AB1<Bn+Bn1if1AA1if1AA1=Bn
52 51 oveq2d AB1<Bn+nif1AA1Bn1if1AA1if1AA1=nif1AA1Bn
53 43 52 eqtrd AB1<Bn+nBn1if1AA1if1AA1=nif1AA1Bn
54 53 mpteq2dva AB1<Bn+nBn1if1AA1if1AA1=n+nif1AA1Bn
55 ovexd AB1<Bn+nBn1if1AA1V
56 18 recnd AB1<Bn+n
57 38 recnd AB1<B1if1AA1
58 57 adantr AB1<Bn+1if1AA1
59 56 58 mulcomd AB1<Bn+n1if1AA1=1if1AA1n
60 59 oveq2d AB1<Bn+Bn1if1AA1=B1if1AA1n
61 27 18 58 cxpmuld AB1<Bn+Bn1if1AA1=Bn1if1AA1
62 27 39 56 cxpmuld AB1<Bn+B1if1AA1n=B1if1AA1n
63 60 61 62 3eqtr3d AB1<Bn+Bn1if1AA1=B1if1AA1n
64 63 oveq2d AB1<Bn+nBn1if1AA1=nB1if1AA1n
65 64 mpteq2dva AB1<Bn+nBn1if1AA1=n+nB1if1AA1n
66 simp2 AB1<BB
67 simp3 AB1<B1<B
68 15 32 66 33 67 lttrd AB1<B0<B
69 66 68 elrpd AB1<BB+
70 69 38 rpcxpcld AB1<BB1if1AA1+
71 70 rpred AB1<BB1if1AA1
72 57 1cxpd AB1<B11if1AA1=1
73 0le1 01
74 73 a1i AB1<B01
75 69 rpge0d AB1<B0B
76 37 rpreccld AB1<B1if1AA1+
77 32 74 66 75 76 cxplt2d AB1<B1<B11if1AA1<B1if1AA1
78 67 77 mpbid AB1<B11if1AA1<B1if1AA1
79 72 78 eqbrtrrd AB1<B1<B1if1AA1
80 cxp2limlem B1if1AA11<B1if1AA1n+nB1if1AA1n0
81 71 79 80 syl2anc AB1<Bn+nB1if1AA1n0
82 65 81 eqbrtrd AB1<Bn+nBn1if1AA10
83 55 82 37 rlimcxp AB1<Bn+nBn1if1AA1if1AA10
84 54 83 eqbrtrrd AB1<Bn+nif1AA1Bn0
85 16 84 rlimres2 AB1<Bn1+∞nif1AA1Bn0
86 simpr AB1<Bn+n+
87 31 adantr AB1<Bn+if1AA1
88 86 87 rpcxpcld AB1<Bn+nif1AA1+
89 88 28 rpdivcld AB1<Bn+nif1AA1Bn+
90 89 rpred AB1<Bn+nif1AA1Bn
91 11 90 sylan2 AB1<Bn1+∞nif1AA1Bn
92 simpl1 AB1<Bn+A
93 86 92 rpcxpcld AB1<Bn+nA+
94 93 28 rpdivcld AB1<Bn+nABn+
95 11 94 sylan2 AB1<Bn1+∞nABn+
96 95 rpred AB1<Bn1+∞nABn
97 11 93 sylan2 AB1<Bn1+∞nA+
98 97 rpred AB1<Bn1+∞nA
99 11 88 sylan2 AB1<Bn1+∞nif1AA1+
100 99 rpred AB1<Bn1+∞nif1AA1
101 11 28 sylan2 AB1<Bn1+∞Bn+
102 4 adantl AB1<Bn1+∞n
103 9 adantl AB1<Bn1+∞1n
104 simpl1 AB1<Bn1+∞A
105 31 adantr AB1<Bn1+∞if1AA1
106 max2 1AAif1AA1
107 1 104 106 sylancr AB1<Bn1+∞Aif1AA1
108 102 103 104 105 107 cxplead AB1<Bn1+∞nAnif1AA1
109 98 100 101 108 lediv1dd AB1<Bn1+∞nABnnif1AA1Bn
110 109 adantrr AB1<Bn1+∞0nnABnnif1AA1Bn
111 95 rpge0d AB1<Bn1+∞0nABn
112 111 adantrr AB1<Bn1+∞0n0nABn
113 15 15 85 91 96 110 112 rlimsqz2 AB1<Bn1+∞nABn0
114 14 113 eqbrtrid AB1<Bn+nABn1+∞0
115 94 rpcnd AB1<Bn+nABn
116 115 fmpttd AB1<Bn+nABn:+
117 rpssre +
118 117 a1i AB1<B+
119 116 118 32 rlimresb AB1<Bn+nABn0n+nABn1+∞0
120 114 119 mpbird AB1<Bn+nABn0