| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
|- 1 e. RR |
| 2 |
|
elicopnf |
|- ( 1 e. RR -> ( n e. ( 1 [,) +oo ) <-> ( n e. RR /\ 1 <_ n ) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( n e. ( 1 [,) +oo ) <-> ( n e. RR /\ 1 <_ n ) ) |
| 4 |
3
|
simplbi |
|- ( n e. ( 1 [,) +oo ) -> n e. RR ) |
| 5 |
|
0red |
|- ( n e. ( 1 [,) +oo ) -> 0 e. RR ) |
| 6 |
|
1red |
|- ( n e. ( 1 [,) +oo ) -> 1 e. RR ) |
| 7 |
|
0lt1 |
|- 0 < 1 |
| 8 |
7
|
a1i |
|- ( n e. ( 1 [,) +oo ) -> 0 < 1 ) |
| 9 |
3
|
simprbi |
|- ( n e. ( 1 [,) +oo ) -> 1 <_ n ) |
| 10 |
5 6 4 8 9
|
ltletrd |
|- ( n e. ( 1 [,) +oo ) -> 0 < n ) |
| 11 |
4 10
|
elrpd |
|- ( n e. ( 1 [,) +oo ) -> n e. RR+ ) |
| 12 |
11
|
ssriv |
|- ( 1 [,) +oo ) C_ RR+ |
| 13 |
|
resmpt |
|- ( ( 1 [,) +oo ) C_ RR+ -> ( ( n e. RR+ |-> ( ( n ^c A ) / ( B ^c n ) ) ) |` ( 1 [,) +oo ) ) = ( n e. ( 1 [,) +oo ) |-> ( ( n ^c A ) / ( B ^c n ) ) ) ) |
| 14 |
12 13
|
ax-mp |
|- ( ( n e. RR+ |-> ( ( n ^c A ) / ( B ^c n ) ) ) |` ( 1 [,) +oo ) ) = ( n e. ( 1 [,) +oo ) |-> ( ( n ^c A ) / ( B ^c n ) ) ) |
| 15 |
|
0red |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 0 e. RR ) |
| 16 |
12
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( 1 [,) +oo ) C_ RR+ ) |
| 17 |
|
rpre |
|- ( n e. RR+ -> n e. RR ) |
| 18 |
17
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> n e. RR ) |
| 19 |
|
rpge0 |
|- ( n e. RR+ -> 0 <_ n ) |
| 20 |
19
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> 0 <_ n ) |
| 21 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> B e. RR ) |
| 22 |
|
0red |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> 0 e. RR ) |
| 23 |
|
1red |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> 1 e. RR ) |
| 24 |
7
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> 0 < 1 ) |
| 25 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> 1 < B ) |
| 26 |
22 23 21 24 25
|
lttrd |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> 0 < B ) |
| 27 |
21 26
|
elrpd |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> B e. RR+ ) |
| 28 |
27 18
|
rpcxpcld |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( B ^c n ) e. RR+ ) |
| 29 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> A e. RR ) |
| 30 |
|
ifcl |
|- ( ( A e. RR /\ 1 e. RR ) -> if ( 1 <_ A , A , 1 ) e. RR ) |
| 31 |
29 1 30
|
sylancl |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> if ( 1 <_ A , A , 1 ) e. RR ) |
| 32 |
|
1red |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 1 e. RR ) |
| 33 |
7
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 0 < 1 ) |
| 34 |
|
max1 |
|- ( ( 1 e. RR /\ A e. RR ) -> 1 <_ if ( 1 <_ A , A , 1 ) ) |
| 35 |
1 29 34
|
sylancr |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 1 <_ if ( 1 <_ A , A , 1 ) ) |
| 36 |
15 32 31 33 35
|
ltletrd |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 0 < if ( 1 <_ A , A , 1 ) ) |
| 37 |
31 36
|
elrpd |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> if ( 1 <_ A , A , 1 ) e. RR+ ) |
| 38 |
37
|
rprecred |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( 1 / if ( 1 <_ A , A , 1 ) ) e. RR ) |
| 39 |
38
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( 1 / if ( 1 <_ A , A , 1 ) ) e. RR ) |
| 40 |
28 39
|
rpcxpcld |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) e. RR+ ) |
| 41 |
31
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> if ( 1 <_ A , A , 1 ) e. CC ) |
| 42 |
41
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> if ( 1 <_ A , A , 1 ) e. CC ) |
| 43 |
18 20 40 42
|
divcxpd |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( n / ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) ^c if ( 1 <_ A , A , 1 ) ) = ( ( n ^c if ( 1 <_ A , A , 1 ) ) / ( ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ^c if ( 1 <_ A , A , 1 ) ) ) ) |
| 44 |
37
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> if ( 1 <_ A , A , 1 ) e. RR+ ) |
| 45 |
44
|
rpne0d |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> if ( 1 <_ A , A , 1 ) =/= 0 ) |
| 46 |
42 45
|
recid2d |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( 1 / if ( 1 <_ A , A , 1 ) ) x. if ( 1 <_ A , A , 1 ) ) = 1 ) |
| 47 |
46
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( B ^c n ) ^c ( ( 1 / if ( 1 <_ A , A , 1 ) ) x. if ( 1 <_ A , A , 1 ) ) ) = ( ( B ^c n ) ^c 1 ) ) |
| 48 |
28 39 42
|
cxpmuld |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( B ^c n ) ^c ( ( 1 / if ( 1 <_ A , A , 1 ) ) x. if ( 1 <_ A , A , 1 ) ) ) = ( ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ^c if ( 1 <_ A , A , 1 ) ) ) |
| 49 |
28
|
rpcnd |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( B ^c n ) e. CC ) |
| 50 |
49
|
cxp1d |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( B ^c n ) ^c 1 ) = ( B ^c n ) ) |
| 51 |
47 48 50
|
3eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ^c if ( 1 <_ A , A , 1 ) ) = ( B ^c n ) ) |
| 52 |
51
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( n ^c if ( 1 <_ A , A , 1 ) ) / ( ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ^c if ( 1 <_ A , A , 1 ) ) ) = ( ( n ^c if ( 1 <_ A , A , 1 ) ) / ( B ^c n ) ) ) |
| 53 |
43 52
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( n / ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) ^c if ( 1 <_ A , A , 1 ) ) = ( ( n ^c if ( 1 <_ A , A , 1 ) ) / ( B ^c n ) ) ) |
| 54 |
53
|
mpteq2dva |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( n e. RR+ |-> ( ( n / ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) ^c if ( 1 <_ A , A , 1 ) ) ) = ( n e. RR+ |-> ( ( n ^c if ( 1 <_ A , A , 1 ) ) / ( B ^c n ) ) ) ) |
| 55 |
|
ovexd |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( n / ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) e. _V ) |
| 56 |
18
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> n e. CC ) |
| 57 |
38
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( 1 / if ( 1 <_ A , A , 1 ) ) e. CC ) |
| 58 |
57
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( 1 / if ( 1 <_ A , A , 1 ) ) e. CC ) |
| 59 |
56 58
|
mulcomd |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( n x. ( 1 / if ( 1 <_ A , A , 1 ) ) ) = ( ( 1 / if ( 1 <_ A , A , 1 ) ) x. n ) ) |
| 60 |
59
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( B ^c ( n x. ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) = ( B ^c ( ( 1 / if ( 1 <_ A , A , 1 ) ) x. n ) ) ) |
| 61 |
27 18 58
|
cxpmuld |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( B ^c ( n x. ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) = ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) |
| 62 |
27 39 56
|
cxpmuld |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( B ^c ( ( 1 / if ( 1 <_ A , A , 1 ) ) x. n ) ) = ( ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ^c n ) ) |
| 63 |
60 61 62
|
3eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) = ( ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ^c n ) ) |
| 64 |
63
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( n / ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) = ( n / ( ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ^c n ) ) ) |
| 65 |
64
|
mpteq2dva |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( n e. RR+ |-> ( n / ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) ) = ( n e. RR+ |-> ( n / ( ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ^c n ) ) ) ) |
| 66 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> B e. RR ) |
| 67 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 1 < B ) |
| 68 |
15 32 66 33 67
|
lttrd |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 0 < B ) |
| 69 |
66 68
|
elrpd |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> B e. RR+ ) |
| 70 |
69 38
|
rpcxpcld |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) e. RR+ ) |
| 71 |
70
|
rpred |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) e. RR ) |
| 72 |
57
|
1cxpd |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( 1 ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) = 1 ) |
| 73 |
|
0le1 |
|- 0 <_ 1 |
| 74 |
73
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 0 <_ 1 ) |
| 75 |
69
|
rpge0d |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 0 <_ B ) |
| 76 |
37
|
rpreccld |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( 1 / if ( 1 <_ A , A , 1 ) ) e. RR+ ) |
| 77 |
32 74 66 75 76
|
cxplt2d |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( 1 < B <-> ( 1 ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) < ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) ) |
| 78 |
67 77
|
mpbid |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( 1 ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) < ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) |
| 79 |
72 78
|
eqbrtrrd |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 1 < ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) |
| 80 |
|
cxp2limlem |
|- ( ( ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) e. RR /\ 1 < ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) -> ( n e. RR+ |-> ( n / ( ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ^c n ) ) ) ~~>r 0 ) |
| 81 |
71 79 80
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( n e. RR+ |-> ( n / ( ( B ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ^c n ) ) ) ~~>r 0 ) |
| 82 |
65 81
|
eqbrtrd |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( n e. RR+ |-> ( n / ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) ) ~~>r 0 ) |
| 83 |
55 82 37
|
rlimcxp |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( n e. RR+ |-> ( ( n / ( ( B ^c n ) ^c ( 1 / if ( 1 <_ A , A , 1 ) ) ) ) ^c if ( 1 <_ A , A , 1 ) ) ) ~~>r 0 ) |
| 84 |
54 83
|
eqbrtrrd |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( n e. RR+ |-> ( ( n ^c if ( 1 <_ A , A , 1 ) ) / ( B ^c n ) ) ) ~~>r 0 ) |
| 85 |
16 84
|
rlimres2 |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( n e. ( 1 [,) +oo ) |-> ( ( n ^c if ( 1 <_ A , A , 1 ) ) / ( B ^c n ) ) ) ~~>r 0 ) |
| 86 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> n e. RR+ ) |
| 87 |
31
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> if ( 1 <_ A , A , 1 ) e. RR ) |
| 88 |
86 87
|
rpcxpcld |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( n ^c if ( 1 <_ A , A , 1 ) ) e. RR+ ) |
| 89 |
88 28
|
rpdivcld |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( n ^c if ( 1 <_ A , A , 1 ) ) / ( B ^c n ) ) e. RR+ ) |
| 90 |
89
|
rpred |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( n ^c if ( 1 <_ A , A , 1 ) ) / ( B ^c n ) ) e. RR ) |
| 91 |
11 90
|
sylan2 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> ( ( n ^c if ( 1 <_ A , A , 1 ) ) / ( B ^c n ) ) e. RR ) |
| 92 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> A e. RR ) |
| 93 |
86 92
|
rpcxpcld |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( n ^c A ) e. RR+ ) |
| 94 |
93 28
|
rpdivcld |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( n ^c A ) / ( B ^c n ) ) e. RR+ ) |
| 95 |
11 94
|
sylan2 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> ( ( n ^c A ) / ( B ^c n ) ) e. RR+ ) |
| 96 |
95
|
rpred |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> ( ( n ^c A ) / ( B ^c n ) ) e. RR ) |
| 97 |
11 93
|
sylan2 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> ( n ^c A ) e. RR+ ) |
| 98 |
97
|
rpred |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> ( n ^c A ) e. RR ) |
| 99 |
11 88
|
sylan2 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> ( n ^c if ( 1 <_ A , A , 1 ) ) e. RR+ ) |
| 100 |
99
|
rpred |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> ( n ^c if ( 1 <_ A , A , 1 ) ) e. RR ) |
| 101 |
11 28
|
sylan2 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> ( B ^c n ) e. RR+ ) |
| 102 |
4
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> n e. RR ) |
| 103 |
9
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> 1 <_ n ) |
| 104 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> A e. RR ) |
| 105 |
31
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> if ( 1 <_ A , A , 1 ) e. RR ) |
| 106 |
|
max2 |
|- ( ( 1 e. RR /\ A e. RR ) -> A <_ if ( 1 <_ A , A , 1 ) ) |
| 107 |
1 104 106
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> A <_ if ( 1 <_ A , A , 1 ) ) |
| 108 |
102 103 104 105 107
|
cxplead |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> ( n ^c A ) <_ ( n ^c if ( 1 <_ A , A , 1 ) ) ) |
| 109 |
98 100 101 108
|
lediv1dd |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> ( ( n ^c A ) / ( B ^c n ) ) <_ ( ( n ^c if ( 1 <_ A , A , 1 ) ) / ( B ^c n ) ) ) |
| 110 |
109
|
adantrr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. ( 1 [,) +oo ) /\ 0 <_ n ) ) -> ( ( n ^c A ) / ( B ^c n ) ) <_ ( ( n ^c if ( 1 <_ A , A , 1 ) ) / ( B ^c n ) ) ) |
| 111 |
95
|
rpge0d |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. ( 1 [,) +oo ) ) -> 0 <_ ( ( n ^c A ) / ( B ^c n ) ) ) |
| 112 |
111
|
adantrr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. ( 1 [,) +oo ) /\ 0 <_ n ) ) -> 0 <_ ( ( n ^c A ) / ( B ^c n ) ) ) |
| 113 |
15 15 85 91 96 110 112
|
rlimsqz2 |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( n e. ( 1 [,) +oo ) |-> ( ( n ^c A ) / ( B ^c n ) ) ) ~~>r 0 ) |
| 114 |
14 113
|
eqbrtrid |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( ( n e. RR+ |-> ( ( n ^c A ) / ( B ^c n ) ) ) |` ( 1 [,) +oo ) ) ~~>r 0 ) |
| 115 |
94
|
rpcnd |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ n e. RR+ ) -> ( ( n ^c A ) / ( B ^c n ) ) e. CC ) |
| 116 |
115
|
fmpttd |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( n e. RR+ |-> ( ( n ^c A ) / ( B ^c n ) ) ) : RR+ --> CC ) |
| 117 |
|
rpssre |
|- RR+ C_ RR |
| 118 |
117
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> RR+ C_ RR ) |
| 119 |
116 118 32
|
rlimresb |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( ( n e. RR+ |-> ( ( n ^c A ) / ( B ^c n ) ) ) ~~>r 0 <-> ( ( n e. RR+ |-> ( ( n ^c A ) / ( B ^c n ) ) ) |` ( 1 [,) +oo ) ) ~~>r 0 ) ) |
| 120 |
114 119
|
mpbird |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( n e. RR+ |-> ( ( n ^c A ) / ( B ^c n ) ) ) ~~>r 0 ) |