| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin23lem22.b |
⊢ 𝐶 = ( 𝑖 ∈ ω ↦ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) |
| 2 |
|
ordom |
⊢ Ord ω |
| 3 |
|
ordwe |
⊢ ( Ord ω → E We ω ) |
| 4 |
|
weso |
⊢ ( E We ω → E Or ω ) |
| 5 |
2 3 4
|
mp2b |
⊢ E Or ω |
| 6 |
5
|
a1i |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → E Or ω ) |
| 7 |
|
sopo |
⊢ ( E Or ω → E Po ω ) |
| 8 |
5 7
|
ax-mp |
⊢ E Po ω |
| 9 |
|
poss |
⊢ ( 𝑆 ⊆ ω → ( E Po ω → E Po 𝑆 ) ) |
| 10 |
8 9
|
mpi |
⊢ ( 𝑆 ⊆ ω → E Po 𝑆 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → E Po 𝑆 ) |
| 12 |
1
|
fin23lem22 |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐶 : ω –1-1-onto→ 𝑆 ) |
| 13 |
|
f1ofo |
⊢ ( 𝐶 : ω –1-1-onto→ 𝑆 → 𝐶 : ω –onto→ 𝑆 ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐶 : ω –onto→ 𝑆 ) |
| 15 |
|
nnsdomel |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝑎 ∈ 𝑏 ↔ 𝑎 ≺ 𝑏 ) ) |
| 16 |
15
|
adantl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝑎 ∈ 𝑏 ↔ 𝑎 ≺ 𝑏 ) ) |
| 17 |
16
|
biimpd |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝑎 ∈ 𝑏 → 𝑎 ≺ 𝑏 ) ) |
| 18 |
|
fin23lem23 |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑎 ∈ ω ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) |
| 19 |
18
|
adantrr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) |
| 20 |
|
ineq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∩ 𝑆 ) = ( 𝑖 ∩ 𝑆 ) ) |
| 21 |
20
|
breq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ↔ ( 𝑖 ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 22 |
21
|
cbvreuvw |
⊢ ( ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ↔ ∃! 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑎 ) |
| 23 |
19 22
|
sylib |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ∃! 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑎 ) |
| 24 |
|
nfv |
⊢ Ⅎ 𝑖 ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 |
| 25 |
21
|
cbvriotavw |
⊢ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) = ( ℩ 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑎 ) |
| 26 |
|
ineq1 |
⊢ ( 𝑖 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) → ( 𝑖 ∩ 𝑆 ) = ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ) |
| 27 |
26
|
breq1d |
⊢ ( 𝑖 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) → ( ( 𝑖 ∩ 𝑆 ) ≈ 𝑎 ↔ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 28 |
24 25 27
|
riotaprop |
⊢ ( ∃! 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑎 → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ 𝑆 ∧ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 29 |
23 28
|
syl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ 𝑆 ∧ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 30 |
29
|
simprd |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 ) |
| 31 |
30
|
adantrr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑎 ≺ 𝑏 ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 ) |
| 32 |
|
simprr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑎 ≺ 𝑏 ) ) → 𝑎 ≺ 𝑏 ) |
| 33 |
|
fin23lem23 |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) |
| 34 |
33
|
adantrl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) |
| 35 |
20
|
breq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ↔ ( 𝑖 ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 36 |
35
|
cbvreuvw |
⊢ ( ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ↔ ∃! 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑏 ) |
| 37 |
34 36
|
sylib |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ∃! 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑏 ) |
| 38 |
|
nfv |
⊢ Ⅎ 𝑖 ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ≈ 𝑏 |
| 39 |
35
|
cbvriotavw |
⊢ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) = ( ℩ 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑏 ) |
| 40 |
|
ineq1 |
⊢ ( 𝑖 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) → ( 𝑖 ∩ 𝑆 ) = ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) |
| 41 |
40
|
breq1d |
⊢ ( 𝑖 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) → ( ( 𝑖 ∩ 𝑆 ) ≈ 𝑏 ↔ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 42 |
38 39 41
|
riotaprop |
⊢ ( ∃! 𝑖 ∈ 𝑆 ( 𝑖 ∩ 𝑆 ) ≈ 𝑏 → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∈ 𝑆 ∧ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 43 |
37 42
|
syl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∈ 𝑆 ∧ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 44 |
43
|
simprd |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ≈ 𝑏 ) |
| 45 |
44
|
ensymd |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → 𝑏 ≈ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) |
| 46 |
45
|
adantrr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑎 ≺ 𝑏 ) ) → 𝑏 ≈ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) |
| 47 |
|
sdomentr |
⊢ ( ( 𝑎 ≺ 𝑏 ∧ 𝑏 ≈ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) → 𝑎 ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) |
| 48 |
32 46 47
|
syl2anc |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑎 ≺ 𝑏 ) ) → 𝑎 ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) |
| 49 |
|
ensdomtr |
⊢ ( ( ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≈ 𝑎 ∧ 𝑎 ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) |
| 50 |
31 48 49
|
syl2anc |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑎 ≺ 𝑏 ) ) → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) |
| 51 |
50
|
expr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝑎 ≺ 𝑏 → ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) ) |
| 52 |
|
simpll |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → 𝑆 ⊆ ω ) |
| 53 |
|
omsson |
⊢ ω ⊆ On |
| 54 |
52 53
|
sstrdi |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → 𝑆 ⊆ On ) |
| 55 |
29
|
simpld |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ 𝑆 ) |
| 56 |
54 55
|
sseldd |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ On ) |
| 57 |
43
|
simpld |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∈ 𝑆 ) |
| 58 |
54 57
|
sseldd |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∈ On ) |
| 59 |
|
onsdominel |
⊢ ( ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ On ∧ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∈ On ∧ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 60 |
59
|
3expia |
⊢ ( ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ On ∧ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∈ On ) → ( ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) ) |
| 61 |
56 58 60
|
syl2anc |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∩ 𝑆 ) ≺ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ∩ 𝑆 ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) ) |
| 62 |
17 51 61
|
3syld |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝑎 ∈ 𝑏 → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) ) |
| 63 |
|
breq2 |
⊢ ( 𝑖 = 𝑎 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 64 |
63
|
riotabidv |
⊢ ( 𝑖 = 𝑎 → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 65 |
|
simprl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → 𝑎 ∈ ω ) |
| 66 |
1 64 65 55
|
fvmptd3 |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝐶 ‘ 𝑎 ) = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 67 |
|
breq2 |
⊢ ( 𝑖 = 𝑏 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 68 |
67
|
riotabidv |
⊢ ( 𝑖 = 𝑏 → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 69 |
|
simprr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → 𝑏 ∈ ω ) |
| 70 |
1 68 69 57
|
fvmptd3 |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝐶 ‘ 𝑏 ) = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) |
| 71 |
66 70
|
eleq12d |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( 𝐶 ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑏 ) ↔ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∈ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑏 ) ) ) |
| 72 |
62 71
|
sylibrd |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝑎 ∈ 𝑏 → ( 𝐶 ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑏 ) ) ) |
| 73 |
|
epel |
⊢ ( 𝑎 E 𝑏 ↔ 𝑎 ∈ 𝑏 ) |
| 74 |
|
fvex |
⊢ ( 𝐶 ‘ 𝑏 ) ∈ V |
| 75 |
74
|
epeli |
⊢ ( ( 𝐶 ‘ 𝑎 ) E ( 𝐶 ‘ 𝑏 ) ↔ ( 𝐶 ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑏 ) ) |
| 76 |
72 73 75
|
3imtr4g |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( 𝑎 E 𝑏 → ( 𝐶 ‘ 𝑎 ) E ( 𝐶 ‘ 𝑏 ) ) ) |
| 77 |
76
|
ralrimivva |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ∀ 𝑎 ∈ ω ∀ 𝑏 ∈ ω ( 𝑎 E 𝑏 → ( 𝐶 ‘ 𝑎 ) E ( 𝐶 ‘ 𝑏 ) ) ) |
| 78 |
|
soisoi |
⊢ ( ( ( E Or ω ∧ E Po 𝑆 ) ∧ ( 𝐶 : ω –onto→ 𝑆 ∧ ∀ 𝑎 ∈ ω ∀ 𝑏 ∈ ω ( 𝑎 E 𝑏 → ( 𝐶 ‘ 𝑎 ) E ( 𝐶 ‘ 𝑏 ) ) ) ) → 𝐶 Isom E , E ( ω , 𝑆 ) ) |
| 79 |
6 11 14 77 78
|
syl22anc |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐶 Isom E , E ( ω , 𝑆 ) ) |