| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin23lem22.b |
|- C = ( i e. _om |-> ( iota_ j e. S ( j i^i S ) ~~ i ) ) |
| 2 |
|
ordom |
|- Ord _om |
| 3 |
|
ordwe |
|- ( Ord _om -> _E We _om ) |
| 4 |
|
weso |
|- ( _E We _om -> _E Or _om ) |
| 5 |
2 3 4
|
mp2b |
|- _E Or _om |
| 6 |
5
|
a1i |
|- ( ( S C_ _om /\ -. S e. Fin ) -> _E Or _om ) |
| 7 |
|
sopo |
|- ( _E Or _om -> _E Po _om ) |
| 8 |
5 7
|
ax-mp |
|- _E Po _om |
| 9 |
|
poss |
|- ( S C_ _om -> ( _E Po _om -> _E Po S ) ) |
| 10 |
8 9
|
mpi |
|- ( S C_ _om -> _E Po S ) |
| 11 |
10
|
adantr |
|- ( ( S C_ _om /\ -. S e. Fin ) -> _E Po S ) |
| 12 |
1
|
fin23lem22 |
|- ( ( S C_ _om /\ -. S e. Fin ) -> C : _om -1-1-onto-> S ) |
| 13 |
|
f1ofo |
|- ( C : _om -1-1-onto-> S -> C : _om -onto-> S ) |
| 14 |
12 13
|
syl |
|- ( ( S C_ _om /\ -. S e. Fin ) -> C : _om -onto-> S ) |
| 15 |
|
nnsdomel |
|- ( ( a e. _om /\ b e. _om ) -> ( a e. b <-> a ~< b ) ) |
| 16 |
15
|
adantl |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a e. b <-> a ~< b ) ) |
| 17 |
16
|
biimpd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a e. b -> a ~< b ) ) |
| 18 |
|
fin23lem23 |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ a e. _om ) -> E! j e. S ( j i^i S ) ~~ a ) |
| 19 |
18
|
adantrr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> E! j e. S ( j i^i S ) ~~ a ) |
| 20 |
|
ineq1 |
|- ( j = i -> ( j i^i S ) = ( i i^i S ) ) |
| 21 |
20
|
breq1d |
|- ( j = i -> ( ( j i^i S ) ~~ a <-> ( i i^i S ) ~~ a ) ) |
| 22 |
21
|
cbvreuvw |
|- ( E! j e. S ( j i^i S ) ~~ a <-> E! i e. S ( i i^i S ) ~~ a ) |
| 23 |
19 22
|
sylib |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> E! i e. S ( i i^i S ) ~~ a ) |
| 24 |
|
nfv |
|- F/ i ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a |
| 25 |
21
|
cbvriotavw |
|- ( iota_ j e. S ( j i^i S ) ~~ a ) = ( iota_ i e. S ( i i^i S ) ~~ a ) |
| 26 |
|
ineq1 |
|- ( i = ( iota_ j e. S ( j i^i S ) ~~ a ) -> ( i i^i S ) = ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ) |
| 27 |
26
|
breq1d |
|- ( i = ( iota_ j e. S ( j i^i S ) ~~ a ) -> ( ( i i^i S ) ~~ a <-> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) ) |
| 28 |
24 25 27
|
riotaprop |
|- ( E! i e. S ( i i^i S ) ~~ a -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) e. S /\ ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) ) |
| 29 |
23 28
|
syl |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) e. S /\ ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) ) |
| 30 |
29
|
simprd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) |
| 31 |
30
|
adantrr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) |
| 32 |
|
simprr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> a ~< b ) |
| 33 |
|
fin23lem23 |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ b e. _om ) -> E! j e. S ( j i^i S ) ~~ b ) |
| 34 |
33
|
adantrl |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> E! j e. S ( j i^i S ) ~~ b ) |
| 35 |
20
|
breq1d |
|- ( j = i -> ( ( j i^i S ) ~~ b <-> ( i i^i S ) ~~ b ) ) |
| 36 |
35
|
cbvreuvw |
|- ( E! j e. S ( j i^i S ) ~~ b <-> E! i e. S ( i i^i S ) ~~ b ) |
| 37 |
34 36
|
sylib |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> E! i e. S ( i i^i S ) ~~ b ) |
| 38 |
|
nfv |
|- F/ i ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b |
| 39 |
35
|
cbvriotavw |
|- ( iota_ j e. S ( j i^i S ) ~~ b ) = ( iota_ i e. S ( i i^i S ) ~~ b ) |
| 40 |
|
ineq1 |
|- ( i = ( iota_ j e. S ( j i^i S ) ~~ b ) -> ( i i^i S ) = ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
| 41 |
40
|
breq1d |
|- ( i = ( iota_ j e. S ( j i^i S ) ~~ b ) -> ( ( i i^i S ) ~~ b <-> ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b ) ) |
| 42 |
38 39 41
|
riotaprop |
|- ( E! i e. S ( i i^i S ) ~~ b -> ( ( iota_ j e. S ( j i^i S ) ~~ b ) e. S /\ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b ) ) |
| 43 |
37 42
|
syl |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ b ) e. S /\ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b ) ) |
| 44 |
43
|
simprd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b ) |
| 45 |
44
|
ensymd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> b ~~ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
| 46 |
45
|
adantrr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> b ~~ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
| 47 |
|
sdomentr |
|- ( ( a ~< b /\ b ~~ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) -> a ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
| 48 |
32 46 47
|
syl2anc |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> a ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
| 49 |
|
ensdomtr |
|- ( ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a /\ a ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
| 50 |
31 48 49
|
syl2anc |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
| 51 |
50
|
expr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a ~< b -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) ) |
| 52 |
|
simpll |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> S C_ _om ) |
| 53 |
|
omsson |
|- _om C_ On |
| 54 |
52 53
|
sstrdi |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> S C_ On ) |
| 55 |
29
|
simpld |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. S ) |
| 56 |
54 55
|
sseldd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. On ) |
| 57 |
43
|
simpld |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( iota_ j e. S ( j i^i S ) ~~ b ) e. S ) |
| 58 |
54 57
|
sseldd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( iota_ j e. S ( j i^i S ) ~~ b ) e. On ) |
| 59 |
|
onsdominel |
|- ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) e. On /\ ( iota_ j e. S ( j i^i S ) ~~ b ) e. On /\ ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) |
| 60 |
59
|
3expia |
|- ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) e. On /\ ( iota_ j e. S ( j i^i S ) ~~ b ) e. On ) -> ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) ) |
| 61 |
56 58 60
|
syl2anc |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) ) |
| 62 |
17 51 61
|
3syld |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a e. b -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) ) |
| 63 |
|
breq2 |
|- ( i = a -> ( ( j i^i S ) ~~ i <-> ( j i^i S ) ~~ a ) ) |
| 64 |
63
|
riotabidv |
|- ( i = a -> ( iota_ j e. S ( j i^i S ) ~~ i ) = ( iota_ j e. S ( j i^i S ) ~~ a ) ) |
| 65 |
|
simprl |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> a e. _om ) |
| 66 |
1 64 65 55
|
fvmptd3 |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( C ` a ) = ( iota_ j e. S ( j i^i S ) ~~ a ) ) |
| 67 |
|
breq2 |
|- ( i = b -> ( ( j i^i S ) ~~ i <-> ( j i^i S ) ~~ b ) ) |
| 68 |
67
|
riotabidv |
|- ( i = b -> ( iota_ j e. S ( j i^i S ) ~~ i ) = ( iota_ j e. S ( j i^i S ) ~~ b ) ) |
| 69 |
|
simprr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> b e. _om ) |
| 70 |
1 68 69 57
|
fvmptd3 |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( C ` b ) = ( iota_ j e. S ( j i^i S ) ~~ b ) ) |
| 71 |
66 70
|
eleq12d |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( C ` a ) e. ( C ` b ) <-> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) ) |
| 72 |
62 71
|
sylibrd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a e. b -> ( C ` a ) e. ( C ` b ) ) ) |
| 73 |
|
epel |
|- ( a _E b <-> a e. b ) |
| 74 |
|
fvex |
|- ( C ` b ) e. _V |
| 75 |
74
|
epeli |
|- ( ( C ` a ) _E ( C ` b ) <-> ( C ` a ) e. ( C ` b ) ) |
| 76 |
72 73 75
|
3imtr4g |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a _E b -> ( C ` a ) _E ( C ` b ) ) ) |
| 77 |
76
|
ralrimivva |
|- ( ( S C_ _om /\ -. S e. Fin ) -> A. a e. _om A. b e. _om ( a _E b -> ( C ` a ) _E ( C ` b ) ) ) |
| 78 |
|
soisoi |
|- ( ( ( _E Or _om /\ _E Po S ) /\ ( C : _om -onto-> S /\ A. a e. _om A. b e. _om ( a _E b -> ( C ` a ) _E ( C ` b ) ) ) ) -> C Isom _E , _E ( _om , S ) ) |
| 79 |
6 11 14 77 78
|
syl22anc |
|- ( ( S C_ _om /\ -. S e. Fin ) -> C Isom _E , _E ( _om , S ) ) |