| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpsubm.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
fxpsubm.c |
⊢ 𝐶 = ( Base ‘ 𝑊 ) |
| 3 |
|
fxpsubm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐶 ↦ ( 𝑝 𝐴 𝑥 ) ) |
| 4 |
|
fxpsubm.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) ) |
| 5 |
|
fxpsubg.1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑊 GrpHom 𝑊 ) ) |
| 6 |
|
oveq1 |
⊢ ( 𝑝 = ( 0g ‘ 𝐺 ) → ( 𝑝 𝐴 𝑥 ) = ( ( 0g ‘ 𝐺 ) 𝐴 𝑥 ) ) |
| 7 |
6
|
mpteq2dv |
⊢ ( 𝑝 = ( 0g ‘ 𝐺 ) → ( 𝑥 ∈ 𝐶 ↦ ( 𝑝 𝐴 𝑥 ) ) = ( 𝑥 ∈ 𝐶 ↦ ( ( 0g ‘ 𝐺 ) 𝐴 𝑥 ) ) ) |
| 8 |
3 7
|
eqtrid |
⊢ ( 𝑝 = ( 0g ‘ 𝐺 ) → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ ( ( 0g ‘ 𝐺 ) 𝐴 𝑥 ) ) ) |
| 9 |
8
|
eleq1d |
⊢ ( 𝑝 = ( 0g ‘ 𝐺 ) → ( 𝐹 ∈ ( 𝑊 GrpHom 𝑊 ) ↔ ( 𝑥 ∈ 𝐶 ↦ ( ( 0g ‘ 𝐺 ) 𝐴 𝑥 ) ) ∈ ( 𝑊 GrpHom 𝑊 ) ) ) |
| 10 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐵 𝐹 ∈ ( 𝑊 GrpHom 𝑊 ) ) |
| 11 |
|
gagrp |
⊢ ( 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) → 𝐺 ∈ Grp ) |
| 12 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 13 |
1 12
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 14 |
4 11 13
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 15 |
9 10 14
|
rspcdva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( ( 0g ‘ 𝐺 ) 𝐴 𝑥 ) ) ∈ ( 𝑊 GrpHom 𝑊 ) ) |
| 16 |
|
ghmgrp1 |
⊢ ( ( 𝑥 ∈ 𝐶 ↦ ( ( 0g ‘ 𝐺 ) 𝐴 𝑥 ) ) ∈ ( 𝑊 GrpHom 𝑊 ) → 𝑊 ∈ Grp ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 18 |
|
ghmmhm |
⊢ ( 𝐹 ∈ ( 𝑊 GrpHom 𝑊 ) → 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) ) |
| 19 |
5 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) ) |
| 20 |
1 2 3 4 19
|
fxpsubm |
⊢ ( 𝜑 → ( 𝐶 FixPts 𝐴 ) ∈ ( SubMnd ‘ 𝑊 ) ) |
| 21 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑊 GrpHom 𝑊 ) ) |
| 22 |
|
gaset |
⊢ ( 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) → 𝐶 ∈ V ) |
| 23 |
4 22
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 24 |
23 4
|
fxpss |
⊢ ( 𝜑 → ( 𝐶 FixPts 𝐴 ) ⊆ 𝐶 ) |
| 25 |
24
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) → 𝑧 ∈ 𝐶 ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑧 ∈ 𝐶 ) |
| 27 |
|
eqid |
⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) |
| 28 |
2 27 27
|
ghminv |
⊢ ( ( 𝐹 ∈ ( 𝑊 GrpHom 𝑊 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝐹 ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 29 |
21 26 28
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 30 |
|
oveq2 |
⊢ ( 𝑥 = ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) → ( 𝑝 𝐴 𝑥 ) = ( 𝑝 𝐴 ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 31 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) → 𝑊 ∈ Grp ) |
| 32 |
2 27 31 25
|
grpinvcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) → ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ∈ 𝐶 ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ∈ 𝐶 ) |
| 34 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) ∈ V ) |
| 35 |
3 30 33 34
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) = ( 𝑝 𝐴 ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 36 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑝 𝐴 𝑥 ) = ( 𝑝 𝐴 𝑧 ) ) |
| 37 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 𝑧 ) ∈ V ) |
| 38 |
3 36 26 37
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑝 𝐴 𝑧 ) ) |
| 39 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) → 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) ) |
| 41 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 42 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) |
| 43 |
1 40 41 42
|
fxpgaeq |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 𝑧 ) = 𝑧 ) |
| 44 |
38 43
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |
| 45 |
44
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( ( invg ‘ 𝑊 ) ‘ ( 𝐹 ‘ 𝑧 ) ) = ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) |
| 46 |
29 35 45
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) = ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) |
| 47 |
46
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) → ∀ 𝑝 ∈ 𝐵 ( 𝑝 𝐴 ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) = ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) |
| 48 |
1 39 32
|
isfxp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) → ( ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ∈ ( 𝐶 FixPts 𝐴 ) ↔ ∀ 𝑝 ∈ 𝐵 ( 𝑝 𝐴 ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) = ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 49 |
47 48
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) → ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 50 |
49
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 51 |
27
|
issubg3 |
⊢ ( 𝑊 ∈ Grp → ( ( 𝐶 FixPts 𝐴 ) ∈ ( SubGrp ‘ 𝑊 ) ↔ ( ( 𝐶 FixPts 𝐴 ) ∈ ( SubMnd ‘ 𝑊 ) ∧ ∀ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ∈ ( 𝐶 FixPts 𝐴 ) ) ) ) |
| 52 |
51
|
biimpar |
⊢ ( ( 𝑊 ∈ Grp ∧ ( ( 𝐶 FixPts 𝐴 ) ∈ ( SubMnd ‘ 𝑊 ) ∧ ∀ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ( ( invg ‘ 𝑊 ) ‘ 𝑧 ) ∈ ( 𝐶 FixPts 𝐴 ) ) ) → ( 𝐶 FixPts 𝐴 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 53 |
17 20 50 52
|
syl12anc |
⊢ ( 𝜑 → ( 𝐶 FixPts 𝐴 ) ∈ ( SubGrp ‘ 𝑊 ) ) |