| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpsubm.b |
|- B = ( Base ` G ) |
| 2 |
|
fxpsubm.c |
|- C = ( Base ` W ) |
| 3 |
|
fxpsubm.f |
|- F = ( x e. C |-> ( p A x ) ) |
| 4 |
|
fxpsubm.a |
|- ( ph -> A e. ( G GrpAct C ) ) |
| 5 |
|
fxpsubg.1 |
|- ( ( ph /\ p e. B ) -> F e. ( W GrpHom W ) ) |
| 6 |
|
oveq1 |
|- ( p = ( 0g ` G ) -> ( p A x ) = ( ( 0g ` G ) A x ) ) |
| 7 |
6
|
mpteq2dv |
|- ( p = ( 0g ` G ) -> ( x e. C |-> ( p A x ) ) = ( x e. C |-> ( ( 0g ` G ) A x ) ) ) |
| 8 |
3 7
|
eqtrid |
|- ( p = ( 0g ` G ) -> F = ( x e. C |-> ( ( 0g ` G ) A x ) ) ) |
| 9 |
8
|
eleq1d |
|- ( p = ( 0g ` G ) -> ( F e. ( W GrpHom W ) <-> ( x e. C |-> ( ( 0g ` G ) A x ) ) e. ( W GrpHom W ) ) ) |
| 10 |
5
|
ralrimiva |
|- ( ph -> A. p e. B F e. ( W GrpHom W ) ) |
| 11 |
|
gagrp |
|- ( A e. ( G GrpAct C ) -> G e. Grp ) |
| 12 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 13 |
1 12
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 14 |
4 11 13
|
3syl |
|- ( ph -> ( 0g ` G ) e. B ) |
| 15 |
9 10 14
|
rspcdva |
|- ( ph -> ( x e. C |-> ( ( 0g ` G ) A x ) ) e. ( W GrpHom W ) ) |
| 16 |
|
ghmgrp1 |
|- ( ( x e. C |-> ( ( 0g ` G ) A x ) ) e. ( W GrpHom W ) -> W e. Grp ) |
| 17 |
15 16
|
syl |
|- ( ph -> W e. Grp ) |
| 18 |
|
ghmmhm |
|- ( F e. ( W GrpHom W ) -> F e. ( W MndHom W ) ) |
| 19 |
5 18
|
syl |
|- ( ( ph /\ p e. B ) -> F e. ( W MndHom W ) ) |
| 20 |
1 2 3 4 19
|
fxpsubm |
|- ( ph -> ( C FixPts A ) e. ( SubMnd ` W ) ) |
| 21 |
5
|
adantlr |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> F e. ( W GrpHom W ) ) |
| 22 |
|
gaset |
|- ( A e. ( G GrpAct C ) -> C e. _V ) |
| 23 |
4 22
|
syl |
|- ( ph -> C e. _V ) |
| 24 |
23 4
|
fxpss |
|- ( ph -> ( C FixPts A ) C_ C ) |
| 25 |
24
|
sselda |
|- ( ( ph /\ z e. ( C FixPts A ) ) -> z e. C ) |
| 26 |
25
|
adantr |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> z e. C ) |
| 27 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
| 28 |
2 27 27
|
ghminv |
|- ( ( F e. ( W GrpHom W ) /\ z e. C ) -> ( F ` ( ( invg ` W ) ` z ) ) = ( ( invg ` W ) ` ( F ` z ) ) ) |
| 29 |
21 26 28
|
syl2anc |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> ( F ` ( ( invg ` W ) ` z ) ) = ( ( invg ` W ) ` ( F ` z ) ) ) |
| 30 |
|
oveq2 |
|- ( x = ( ( invg ` W ) ` z ) -> ( p A x ) = ( p A ( ( invg ` W ) ` z ) ) ) |
| 31 |
17
|
adantr |
|- ( ( ph /\ z e. ( C FixPts A ) ) -> W e. Grp ) |
| 32 |
2 27 31 25
|
grpinvcld |
|- ( ( ph /\ z e. ( C FixPts A ) ) -> ( ( invg ` W ) ` z ) e. C ) |
| 33 |
32
|
adantr |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> ( ( invg ` W ) ` z ) e. C ) |
| 34 |
|
ovexd |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> ( p A ( ( invg ` W ) ` z ) ) e. _V ) |
| 35 |
3 30 33 34
|
fvmptd3 |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> ( F ` ( ( invg ` W ) ` z ) ) = ( p A ( ( invg ` W ) ` z ) ) ) |
| 36 |
|
oveq2 |
|- ( x = z -> ( p A x ) = ( p A z ) ) |
| 37 |
|
ovexd |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> ( p A z ) e. _V ) |
| 38 |
3 36 26 37
|
fvmptd3 |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> ( F ` z ) = ( p A z ) ) |
| 39 |
4
|
adantr |
|- ( ( ph /\ z e. ( C FixPts A ) ) -> A e. ( G GrpAct C ) ) |
| 40 |
39
|
adantr |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> A e. ( G GrpAct C ) ) |
| 41 |
|
simplr |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> z e. ( C FixPts A ) ) |
| 42 |
|
simpr |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> p e. B ) |
| 43 |
1 40 41 42
|
fxpgaeq |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> ( p A z ) = z ) |
| 44 |
38 43
|
eqtrd |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> ( F ` z ) = z ) |
| 45 |
44
|
fveq2d |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> ( ( invg ` W ) ` ( F ` z ) ) = ( ( invg ` W ) ` z ) ) |
| 46 |
29 35 45
|
3eqtr3d |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ p e. B ) -> ( p A ( ( invg ` W ) ` z ) ) = ( ( invg ` W ) ` z ) ) |
| 47 |
46
|
ralrimiva |
|- ( ( ph /\ z e. ( C FixPts A ) ) -> A. p e. B ( p A ( ( invg ` W ) ` z ) ) = ( ( invg ` W ) ` z ) ) |
| 48 |
1 39 32
|
isfxp |
|- ( ( ph /\ z e. ( C FixPts A ) ) -> ( ( ( invg ` W ) ` z ) e. ( C FixPts A ) <-> A. p e. B ( p A ( ( invg ` W ) ` z ) ) = ( ( invg ` W ) ` z ) ) ) |
| 49 |
47 48
|
mpbird |
|- ( ( ph /\ z e. ( C FixPts A ) ) -> ( ( invg ` W ) ` z ) e. ( C FixPts A ) ) |
| 50 |
49
|
ralrimiva |
|- ( ph -> A. z e. ( C FixPts A ) ( ( invg ` W ) ` z ) e. ( C FixPts A ) ) |
| 51 |
27
|
issubg3 |
|- ( W e. Grp -> ( ( C FixPts A ) e. ( SubGrp ` W ) <-> ( ( C FixPts A ) e. ( SubMnd ` W ) /\ A. z e. ( C FixPts A ) ( ( invg ` W ) ` z ) e. ( C FixPts A ) ) ) ) |
| 52 |
51
|
biimpar |
|- ( ( W e. Grp /\ ( ( C FixPts A ) e. ( SubMnd ` W ) /\ A. z e. ( C FixPts A ) ( ( invg ` W ) ` z ) e. ( C FixPts A ) ) ) -> ( C FixPts A ) e. ( SubGrp ` W ) ) |
| 53 |
17 20 50 52
|
syl12anc |
|- ( ph -> ( C FixPts A ) e. ( SubGrp ` W ) ) |