Metamath Proof Explorer


Theorem hlrelat2

Description: A consequence of relative atomicity. ( chrelat2i analog.) (Contributed by NM, 5-Feb-2012)

Ref Expression
Hypotheses hlrelat2.b 𝐵 = ( Base ‘ 𝐾 )
hlrelat2.l = ( le ‘ 𝐾 )
hlrelat2.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion hlrelat2 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( ¬ 𝑋 𝑌 ↔ ∃ 𝑝𝐴 ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 hlrelat2.b 𝐵 = ( Base ‘ 𝐾 )
2 hlrelat2.l = ( le ‘ 𝐾 )
3 hlrelat2.a 𝐴 = ( Atoms ‘ 𝐾 )
4 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
5 eqid ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 )
6 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
7 1 2 5 6 latnlemlt ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ¬ 𝑋 𝑌 ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 ) )
8 4 7 syl3an1 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( ¬ 𝑋 𝑌 ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 ) )
9 simp1 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ HL )
10 1 6 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 )
11 4 10 syl3an1 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 )
12 simp2 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → 𝑋𝐵 )
13 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
14 1 2 5 13 3 hlrelat ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵𝑋𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 ) → ∃ 𝑝𝐴 ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) )
15 14 ex ( ( 𝐾 ∈ HL ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵𝑋𝐵 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 → ∃ 𝑝𝐴 ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) ) )
16 9 11 12 15 syl3anc ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 → ∃ 𝑝𝐴 ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) ) )
17 simpl1 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → 𝐾 ∈ HL )
18 17 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → 𝐾 ∈ Lat )
19 11 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 )
20 1 3 atbase ( 𝑝𝐴𝑝𝐵 )
21 20 adantl ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → 𝑝𝐵 )
22 simpl2 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → 𝑋𝐵 )
23 1 2 13 latjle12 ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵𝑝𝐵𝑋𝐵 ) ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) 𝑋𝑝 𝑋 ) ↔ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) )
24 18 19 21 22 23 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) 𝑋𝑝 𝑋 ) ↔ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) )
25 simpr ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) 𝑋𝑝 𝑋 ) → 𝑝 𝑋 )
26 24 25 syl6bir ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) 𝑋𝑝 𝑋 ) )
27 26 adantld ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) → 𝑝 𝑋 ) )
28 simpl3 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → 𝑌𝐵 )
29 1 2 6 latlem12 ( ( 𝐾 ∈ Lat ∧ ( 𝑝𝐵𝑋𝐵𝑌𝐵 ) ) → ( ( 𝑝 𝑋𝑝 𝑌 ) ↔ 𝑝 ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) )
30 18 21 22 28 29 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → ( ( 𝑝 𝑋𝑝 𝑌 ) ↔ 𝑝 ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) )
31 30 notbid ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → ( ¬ ( 𝑝 𝑋𝑝 𝑌 ) ↔ ¬ 𝑝 ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) )
32 1 2 5 13 latnle ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵𝑝𝐵 ) → ( ¬ 𝑝 ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) )
33 18 19 21 32 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → ( ¬ 𝑝 ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) )
34 31 33 bitrd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → ( ¬ ( 𝑝 𝑋𝑝 𝑌 ) ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) )
35 34 24 anbi12d ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → ( ( ¬ ( 𝑝 𝑋𝑝 𝑌 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) 𝑋𝑝 𝑋 ) ) ↔ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) ) )
36 pm3.21 ( 𝑝 𝑌 → ( 𝑝 𝑋 → ( 𝑝 𝑋𝑝 𝑌 ) ) )
37 orcom ( ( ( 𝑝 𝑋𝑝 𝑌 ) ∨ ¬ 𝑝 𝑋 ) ↔ ( ¬ 𝑝 𝑋 ∨ ( 𝑝 𝑋𝑝 𝑌 ) ) )
38 pm4.55 ( ¬ ( ¬ ( 𝑝 𝑋𝑝 𝑌 ) ∧ 𝑝 𝑋 ) ↔ ( ( 𝑝 𝑋𝑝 𝑌 ) ∨ ¬ 𝑝 𝑋 ) )
39 imor ( ( 𝑝 𝑋 → ( 𝑝 𝑋𝑝 𝑌 ) ) ↔ ( ¬ 𝑝 𝑋 ∨ ( 𝑝 𝑋𝑝 𝑌 ) ) )
40 37 38 39 3bitr4ri ( ( 𝑝 𝑋 → ( 𝑝 𝑋𝑝 𝑌 ) ) ↔ ¬ ( ¬ ( 𝑝 𝑋𝑝 𝑌 ) ∧ 𝑝 𝑋 ) )
41 36 40 sylib ( 𝑝 𝑌 → ¬ ( ¬ ( 𝑝 𝑋𝑝 𝑌 ) ∧ 𝑝 𝑋 ) )
42 41 con2i ( ( ¬ ( 𝑝 𝑋𝑝 𝑌 ) ∧ 𝑝 𝑋 ) → ¬ 𝑝 𝑌 )
43 42 adantrl ( ( ¬ ( 𝑝 𝑋𝑝 𝑌 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) 𝑋𝑝 𝑋 ) ) → ¬ 𝑝 𝑌 )
44 35 43 syl6bir ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) → ¬ 𝑝 𝑌 ) )
45 27 44 jcad ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) → ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) ) )
46 45 reximdva ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( ∃ 𝑝𝐴 ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) → ∃ 𝑝𝐴 ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) ) )
47 16 46 syld ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 → ∃ 𝑝𝐴 ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) ) )
48 8 47 sylbid ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( ¬ 𝑋 𝑌 → ∃ 𝑝𝐴 ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) ) )
49 1 2 lattr ( ( 𝐾 ∈ Lat ∧ ( 𝑝𝐵𝑋𝐵𝑌𝐵 ) ) → ( ( 𝑝 𝑋𝑋 𝑌 ) → 𝑝 𝑌 ) )
50 18 21 22 28 49 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑝𝐴 ) → ( ( 𝑝 𝑋𝑋 𝑌 ) → 𝑝 𝑌 ) )
51 50 exp4b ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑝𝐴 → ( 𝑝 𝑋 → ( 𝑋 𝑌𝑝 𝑌 ) ) ) )
52 51 com34 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑝𝐴 → ( 𝑋 𝑌 → ( 𝑝 𝑋𝑝 𝑌 ) ) ) )
53 52 com23 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 → ( 𝑝𝐴 → ( 𝑝 𝑋𝑝 𝑌 ) ) ) )
54 53 ralrimdv ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 → ∀ 𝑝𝐴 ( 𝑝 𝑋𝑝 𝑌 ) ) )
55 iman ( ( 𝑝 𝑋𝑝 𝑌 ) ↔ ¬ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) )
56 55 ralbii ( ∀ 𝑝𝐴 ( 𝑝 𝑋𝑝 𝑌 ) ↔ ∀ 𝑝𝐴 ¬ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) )
57 ralnex ( ∀ 𝑝𝐴 ¬ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) ↔ ¬ ∃ 𝑝𝐴 ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) )
58 56 57 bitri ( ∀ 𝑝𝐴 ( 𝑝 𝑋𝑝 𝑌 ) ↔ ¬ ∃ 𝑝𝐴 ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) )
59 54 58 syl6ib ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 → ¬ ∃ 𝑝𝐴 ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) ) )
60 59 con2d ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( ∃ 𝑝𝐴 ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) → ¬ 𝑋 𝑌 ) )
61 48 60 impbid ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( ¬ 𝑋 𝑌 ↔ ∃ 𝑝𝐴 ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑌 ) ) )