| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzssuz |
⊢ ( 0 ... 𝐵 ) ⊆ ( ℤ≥ ‘ 0 ) |
| 2 |
|
uzssz |
⊢ ( ℤ≥ ‘ 0 ) ⊆ ℤ |
| 3 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 4 |
2 3
|
sstri |
⊢ ( ℤ≥ ‘ 0 ) ⊆ ℝ |
| 5 |
1 4
|
sstri |
⊢ ( 0 ... 𝐵 ) ⊆ ℝ |
| 6 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) → ( 0 ... 𝐵 ) ⊆ ℝ ) |
| 7 |
|
ovexd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) → ( 0 ... ( 𝐵 − 1 ) ) ∈ V ) |
| 8 |
|
nnm1nn0 |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 − 1 ) ∈ ℕ0 ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 − 1 ) ∈ ℕ0 ) |
| 10 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 11 |
9 10
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 12 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 14 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 16 |
15
|
ltm1d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 − 1 ) < 𝐵 ) |
| 17 |
|
fzsdom2 |
⊢ ( ( ( ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐵 − 1 ) < 𝐵 ) → ( 0 ... ( 𝐵 − 1 ) ) ≺ ( 0 ... 𝐵 ) ) |
| 18 |
11 13 16 17
|
syl21anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) → ( 0 ... ( 𝐵 − 1 ) ) ≺ ( 0 ... 𝐵 ) ) |
| 19 |
14
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 20 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 22 |
|
elfzelz |
⊢ ( 𝑎 ∈ ( 0 ... 𝐵 ) → 𝑎 ∈ ℤ ) |
| 23 |
22
|
zred |
⊢ ( 𝑎 ∈ ( 0 ... 𝐵 ) → 𝑎 ∈ ℝ ) |
| 24 |
23
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → 𝑎 ∈ ℝ ) |
| 25 |
21 24
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( 𝐴 · 𝑎 ) ∈ ℝ ) |
| 26 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 27 |
|
modcl |
⊢ ( ( ( 𝐴 · 𝑎 ) ∈ ℝ ∧ 1 ∈ ℝ+ ) → ( ( 𝐴 · 𝑎 ) mod 1 ) ∈ ℝ ) |
| 28 |
25 26 27
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝐴 · 𝑎 ) mod 1 ) ∈ ℝ ) |
| 29 |
19 28
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ∈ ℝ ) |
| 30 |
29
|
flcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ∈ ℤ ) |
| 31 |
19
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 32 |
31
|
mul01d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( 𝐵 · 0 ) = 0 ) |
| 33 |
|
modge0 |
⊢ ( ( ( 𝐴 · 𝑎 ) ∈ ℝ ∧ 1 ∈ ℝ+ ) → 0 ≤ ( ( 𝐴 · 𝑎 ) mod 1 ) ) |
| 34 |
25 26 33
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( ( 𝐴 · 𝑎 ) mod 1 ) ) |
| 35 |
|
0red |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → 0 ∈ ℝ ) |
| 36 |
|
nngt0 |
⊢ ( 𝐵 ∈ ℕ → 0 < 𝐵 ) |
| 37 |
36
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → 0 < 𝐵 ) |
| 38 |
|
lemul2 |
⊢ ( ( 0 ∈ ℝ ∧ ( ( 𝐴 · 𝑎 ) mod 1 ) ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 0 ≤ ( ( 𝐴 · 𝑎 ) mod 1 ) ↔ ( 𝐵 · 0 ) ≤ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ) |
| 39 |
35 28 19 37 38
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( 0 ≤ ( ( 𝐴 · 𝑎 ) mod 1 ) ↔ ( 𝐵 · 0 ) ≤ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ) |
| 40 |
34 39
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( 𝐵 · 0 ) ≤ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) |
| 41 |
32 40
|
eqbrtrrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) |
| 42 |
35 29
|
lenltd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( 0 ≤ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ↔ ¬ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) < 0 ) ) |
| 43 |
41 42
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ¬ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) < 0 ) |
| 44 |
|
0z |
⊢ 0 ∈ ℤ |
| 45 |
|
fllt |
⊢ ( ( ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) < 0 ↔ ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) < 0 ) ) |
| 46 |
29 44 45
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) < 0 ↔ ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) < 0 ) ) |
| 47 |
43 46
|
mtbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ¬ ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) < 0 ) |
| 48 |
30
|
zred |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ∈ ℝ ) |
| 49 |
35 48
|
lenltd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( 0 ≤ ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ↔ ¬ ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) < 0 ) ) |
| 50 |
47 49
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → 0 ≤ ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ) |
| 51 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ) ) |
| 52 |
30 50 51
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ∈ ℕ0 ) |
| 53 |
8
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( 𝐵 − 1 ) ∈ ℕ0 ) |
| 54 |
|
flle |
⊢ ( ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ≤ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) |
| 55 |
29 54
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ≤ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) |
| 56 |
|
modlt |
⊢ ( ( ( 𝐴 · 𝑎 ) ∈ ℝ ∧ 1 ∈ ℝ+ ) → ( ( 𝐴 · 𝑎 ) mod 1 ) < 1 ) |
| 57 |
25 26 56
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝐴 · 𝑎 ) mod 1 ) < 1 ) |
| 58 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → 1 ∈ ℝ ) |
| 59 |
|
ltmul2 |
⊢ ( ( ( ( 𝐴 · 𝑎 ) mod 1 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( ( 𝐴 · 𝑎 ) mod 1 ) < 1 ↔ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) < ( 𝐵 · 1 ) ) ) |
| 60 |
28 58 19 37 59
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ( ( 𝐴 · 𝑎 ) mod 1 ) < 1 ↔ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) < ( 𝐵 · 1 ) ) ) |
| 61 |
57 60
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) < ( 𝐵 · 1 ) ) |
| 62 |
31
|
mulridd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( 𝐵 · 1 ) = 𝐵 ) |
| 63 |
61 62
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) < 𝐵 ) |
| 64 |
48 29 19 55 63
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) < 𝐵 ) |
| 65 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
| 66 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 67 |
|
npcan |
⊢ ( ( 𝐵 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐵 − 1 ) + 1 ) = 𝐵 ) |
| 68 |
65 66 67
|
sylancl |
⊢ ( 𝐵 ∈ ℕ → ( ( 𝐵 − 1 ) + 1 ) = 𝐵 ) |
| 69 |
68
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ( 𝐵 − 1 ) + 1 ) = 𝐵 ) |
| 70 |
64 69
|
breqtrrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) < ( ( 𝐵 − 1 ) + 1 ) ) |
| 71 |
12
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → 𝐵 ∈ ℤ ) |
| 72 |
|
1z |
⊢ 1 ∈ ℤ |
| 73 |
|
zsubcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝐵 − 1 ) ∈ ℤ ) |
| 74 |
71 72 73
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( 𝐵 − 1 ) ∈ ℤ ) |
| 75 |
|
zleltp1 |
⊢ ( ( ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ∈ ℤ ∧ ( 𝐵 − 1 ) ∈ ℤ ) → ( ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ≤ ( 𝐵 − 1 ) ↔ ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) < ( ( 𝐵 − 1 ) + 1 ) ) ) |
| 76 |
30 74 75
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ≤ ( 𝐵 − 1 ) ↔ ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) < ( ( 𝐵 − 1 ) + 1 ) ) ) |
| 77 |
70 76
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ≤ ( 𝐵 − 1 ) ) |
| 78 |
|
elfz2nn0 |
⊢ ( ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ∈ ( 0 ... ( 𝐵 − 1 ) ) ↔ ( ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ∈ ℕ0 ∧ ( 𝐵 − 1 ) ∈ ℕ0 ∧ ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ≤ ( 𝐵 − 1 ) ) ) |
| 79 |
52 53 77 78
|
syl3anbrc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) ∧ 𝑎 ∈ ( 0 ... 𝐵 ) ) → ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) ∈ ( 0 ... ( 𝐵 − 1 ) ) ) |
| 80 |
|
oveq2 |
⊢ ( 𝑎 = 𝑥 → ( 𝐴 · 𝑎 ) = ( 𝐴 · 𝑥 ) ) |
| 81 |
80
|
oveq1d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝐴 · 𝑎 ) mod 1 ) = ( ( 𝐴 · 𝑥 ) mod 1 ) ) |
| 82 |
81
|
oveq2d |
⊢ ( 𝑎 = 𝑥 → ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) = ( 𝐵 · ( ( 𝐴 · 𝑥 ) mod 1 ) ) ) |
| 83 |
82
|
fveq2d |
⊢ ( 𝑎 = 𝑥 → ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) = ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑥 ) mod 1 ) ) ) ) |
| 84 |
|
oveq2 |
⊢ ( 𝑎 = 𝑦 → ( 𝐴 · 𝑎 ) = ( 𝐴 · 𝑦 ) ) |
| 85 |
84
|
oveq1d |
⊢ ( 𝑎 = 𝑦 → ( ( 𝐴 · 𝑎 ) mod 1 ) = ( ( 𝐴 · 𝑦 ) mod 1 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( 𝑎 = 𝑦 → ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) = ( 𝐵 · ( ( 𝐴 · 𝑦 ) mod 1 ) ) ) |
| 87 |
86
|
fveq2d |
⊢ ( 𝑎 = 𝑦 → ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑎 ) mod 1 ) ) ) = ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑦 ) mod 1 ) ) ) ) |
| 88 |
6 7 18 79 83 87
|
fphpdo |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ ) → ∃ 𝑥 ∈ ( 0 ... 𝐵 ) ∃ 𝑦 ∈ ( 0 ... 𝐵 ) ( 𝑥 < 𝑦 ∧ ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑥 ) mod 1 ) ) ) = ( ⌊ ‘ ( 𝐵 · ( ( 𝐴 · 𝑦 ) mod 1 ) ) ) ) ) |