Metamath Proof Explorer


Theorem ismrc

Description: A function is a Moore closure operator iff it satisfies mrcssid , mrcss , and mrcidm . (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion ismrc ( 𝐹 ∈ ( mrCls “ ( Moore ‘ 𝐵 ) ) ↔ ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 fnmrc mrCls Fn ran Moore
2 fnfun ( mrCls Fn ran Moore → Fun mrCls )
3 1 2 ax-mp Fun mrCls
4 fvelima ( ( Fun mrCls ∧ 𝐹 ∈ ( mrCls “ ( Moore ‘ 𝐵 ) ) ) → ∃ 𝑧 ∈ ( Moore ‘ 𝐵 ) ( mrCls ‘ 𝑧 ) = 𝐹 )
5 3 4 mpan ( 𝐹 ∈ ( mrCls “ ( Moore ‘ 𝐵 ) ) → ∃ 𝑧 ∈ ( Moore ‘ 𝐵 ) ( mrCls ‘ 𝑧 ) = 𝐹 )
6 elfvex ( 𝑧 ∈ ( Moore ‘ 𝐵 ) → 𝐵 ∈ V )
7 eqid ( mrCls ‘ 𝑧 ) = ( mrCls ‘ 𝑧 )
8 7 mrcf ( 𝑧 ∈ ( Moore ‘ 𝐵 ) → ( mrCls ‘ 𝑧 ) : 𝒫 𝐵𝑧 )
9 mresspw ( 𝑧 ∈ ( Moore ‘ 𝐵 ) → 𝑧 ⊆ 𝒫 𝐵 )
10 8 9 fssd ( 𝑧 ∈ ( Moore ‘ 𝐵 ) → ( mrCls ‘ 𝑧 ) : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
11 7 mrcssid ( ( 𝑧 ∈ ( Moore ‘ 𝐵 ) ∧ 𝑥𝐵 ) → 𝑥 ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) )
12 11 adantrr ( ( 𝑧 ∈ ( Moore ‘ 𝐵 ) ∧ ( 𝑥𝐵𝑦𝑥 ) ) → 𝑥 ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) )
13 7 mrcss ( ( 𝑧 ∈ ( Moore ‘ 𝐵 ) ∧ 𝑦𝑥𝑥𝐵 ) → ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) )
14 13 3expb ( ( 𝑧 ∈ ( Moore ‘ 𝐵 ) ∧ ( 𝑦𝑥𝑥𝐵 ) ) → ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) )
15 14 ancom2s ( ( 𝑧 ∈ ( Moore ‘ 𝐵 ) ∧ ( 𝑥𝐵𝑦𝑥 ) ) → ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) )
16 7 mrcidm ( ( 𝑧 ∈ ( Moore ‘ 𝐵 ) ∧ 𝑥𝐵 ) → ( ( mrCls ‘ 𝑧 ) ‘ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) = ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) )
17 16 adantrr ( ( 𝑧 ∈ ( Moore ‘ 𝐵 ) ∧ ( 𝑥𝐵𝑦𝑥 ) ) → ( ( mrCls ‘ 𝑧 ) ‘ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) = ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) )
18 12 15 17 3jca ( ( 𝑧 ∈ ( Moore ‘ 𝐵 ) ∧ ( 𝑥𝐵𝑦𝑥 ) ) → ( 𝑥 ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) = ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) )
19 18 ex ( 𝑧 ∈ ( Moore ‘ 𝐵 ) → ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) = ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) ) )
20 19 alrimivv ( 𝑧 ∈ ( Moore ‘ 𝐵 ) → ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) = ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) ) )
21 6 10 20 3jca ( 𝑧 ∈ ( Moore ‘ 𝐵 ) → ( 𝐵 ∈ V ∧ ( mrCls ‘ 𝑧 ) : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) = ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) ) ) )
22 feq1 ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( ( mrCls ‘ 𝑧 ) : 𝒫 𝐵 ⟶ 𝒫 𝐵𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) )
23 fveq1 ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
24 23 sseq2d ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( 𝑥 ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ↔ 𝑥 ⊆ ( 𝐹𝑥 ) ) )
25 fveq1 ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
26 25 23 sseq12d ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ↔ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ) )
27 id ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( mrCls ‘ 𝑧 ) = 𝐹 )
28 27 23 fveq12d ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( ( mrCls ‘ 𝑧 ) ‘ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝐹𝑥 ) ) )
29 28 23 eqeq12d ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( ( ( mrCls ‘ 𝑧 ) ‘ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) = ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) )
30 24 26 29 3anbi123d ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( ( 𝑥 ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) = ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) ↔ ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) )
31 30 imbi2d ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) = ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) )
32 31 2albidv ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) = ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) )
33 22 32 3anbi23d ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( ( 𝐵 ∈ V ∧ ( mrCls ‘ 𝑧 ) : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ 𝑦 ) ⊆ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ∧ ( ( mrCls ‘ 𝑧 ) ‘ ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) = ( ( mrCls ‘ 𝑧 ) ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) ) )
34 21 33 syl5ibcom ( 𝑧 ∈ ( Moore ‘ 𝐵 ) → ( ( mrCls ‘ 𝑧 ) = 𝐹 → ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) ) )
35 34 rexlimiv ( ∃ 𝑧 ∈ ( Moore ‘ 𝐵 ) ( mrCls ‘ 𝑧 ) = 𝐹 → ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) )
36 5 35 syl ( 𝐹 ∈ ( mrCls “ ( Moore ‘ 𝐵 ) ) → ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) )
37 simp1 ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) → 𝐵 ∈ V )
38 simp2 ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) → 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
39 ssid 𝑧𝑧
40 3simpb ( ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) )
41 40 imim2i ( ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) → ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) )
42 41 2alimi ( ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) → ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) )
43 sseq1 ( 𝑥 = 𝑧 → ( 𝑥𝐵𝑧𝐵 ) )
44 43 adantr ( ( 𝑥 = 𝑧𝑦 = 𝑧 ) → ( 𝑥𝐵𝑧𝐵 ) )
45 sseq12 ( ( 𝑦 = 𝑧𝑥 = 𝑧 ) → ( 𝑦𝑥𝑧𝑧 ) )
46 45 ancoms ( ( 𝑥 = 𝑧𝑦 = 𝑧 ) → ( 𝑦𝑥𝑧𝑧 ) )
47 44 46 anbi12d ( ( 𝑥 = 𝑧𝑦 = 𝑧 ) → ( ( 𝑥𝐵𝑦𝑥 ) ↔ ( 𝑧𝐵𝑧𝑧 ) ) )
48 id ( 𝑥 = 𝑧𝑥 = 𝑧 )
49 fveq2 ( 𝑥 = 𝑧 → ( 𝐹𝑥 ) = ( 𝐹𝑧 ) )
50 48 49 sseq12d ( 𝑥 = 𝑧 → ( 𝑥 ⊆ ( 𝐹𝑥 ) ↔ 𝑧 ⊆ ( 𝐹𝑧 ) ) )
51 50 adantr ( ( 𝑥 = 𝑧𝑦 = 𝑧 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ↔ 𝑧 ⊆ ( 𝐹𝑧 ) ) )
52 2fveq3 ( 𝑥 = 𝑧 → ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹 ‘ ( 𝐹𝑧 ) ) )
53 52 49 eqeq12d ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ↔ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) )
54 53 adantr ( ( 𝑥 = 𝑧𝑦 = 𝑧 ) → ( ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ↔ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) )
55 51 54 anbi12d ( ( 𝑥 = 𝑧𝑦 = 𝑧 ) → ( ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ↔ ( 𝑧 ⊆ ( 𝐹𝑧 ) ∧ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) ) )
56 47 55 imbi12d ( ( 𝑥 = 𝑧𝑦 = 𝑧 ) → ( ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ↔ ( ( 𝑧𝐵𝑧𝑧 ) → ( 𝑧 ⊆ ( 𝐹𝑧 ) ∧ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) ) ) )
57 56 spc2gv ( ( 𝑧 ∈ V ∧ 𝑧 ∈ V ) → ( ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) → ( ( 𝑧𝐵𝑧𝑧 ) → ( 𝑧 ⊆ ( 𝐹𝑧 ) ∧ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) ) ) )
58 57 el2v ( ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) → ( ( 𝑧𝐵𝑧𝑧 ) → ( 𝑧 ⊆ ( 𝐹𝑧 ) ∧ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) ) )
59 42 58 syl ( ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) → ( ( 𝑧𝐵𝑧𝑧 ) → ( 𝑧 ⊆ ( 𝐹𝑧 ) ∧ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) ) )
60 59 3ad2ant3 ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) → ( ( 𝑧𝐵𝑧𝑧 ) → ( 𝑧 ⊆ ( 𝐹𝑧 ) ∧ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) ) )
61 39 60 mpan2i ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) → ( 𝑧𝐵 → ( 𝑧 ⊆ ( 𝐹𝑧 ) ∧ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) ) )
62 61 imp ( ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) ∧ 𝑧𝐵 ) → ( 𝑧 ⊆ ( 𝐹𝑧 ) ∧ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) )
63 62 simpld ( ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) ∧ 𝑧𝐵 ) → 𝑧 ⊆ ( 𝐹𝑧 ) )
64 simp2 ( ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) )
65 64 imim2i ( ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) → ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ) )
66 65 2alimi ( ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) → ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ) )
67 66 3ad2ant3 ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) → ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ) )
68 43 adantr ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝑥𝐵𝑧𝐵 ) )
69 sseq12 ( ( 𝑦 = 𝑤𝑥 = 𝑧 ) → ( 𝑦𝑥𝑤𝑧 ) )
70 69 ancoms ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝑦𝑥𝑤𝑧 ) )
71 68 70 anbi12d ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( ( 𝑥𝐵𝑦𝑥 ) ↔ ( 𝑧𝐵𝑤𝑧 ) ) )
72 fveq2 ( 𝑦 = 𝑤 → ( 𝐹𝑦 ) = ( 𝐹𝑤 ) )
73 sseq12 ( ( ( 𝐹𝑦 ) = ( 𝐹𝑤 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑧 ) ) → ( ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ↔ ( 𝐹𝑤 ) ⊆ ( 𝐹𝑧 ) ) )
74 72 49 73 syl2anr ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ↔ ( 𝐹𝑤 ) ⊆ ( 𝐹𝑧 ) ) )
75 71 74 imbi12d ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ) ↔ ( ( 𝑧𝐵𝑤𝑧 ) → ( 𝐹𝑤 ) ⊆ ( 𝐹𝑧 ) ) ) )
76 75 spc2gv ( ( 𝑧 ∈ V ∧ 𝑤 ∈ V ) → ( ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ) → ( ( 𝑧𝐵𝑤𝑧 ) → ( 𝐹𝑤 ) ⊆ ( 𝐹𝑧 ) ) ) )
77 76 el2v ( ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ) → ( ( 𝑧𝐵𝑤𝑧 ) → ( 𝐹𝑤 ) ⊆ ( 𝐹𝑧 ) ) )
78 67 77 syl ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) → ( ( 𝑧𝐵𝑤𝑧 ) → ( 𝐹𝑤 ) ⊆ ( 𝐹𝑧 ) ) )
79 78 3impib ( ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) ∧ 𝑧𝐵𝑤𝑧 ) → ( 𝐹𝑤 ) ⊆ ( 𝐹𝑧 ) )
80 62 simprd ( ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) ∧ 𝑧𝐵 ) → ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) )
81 37 38 63 79 80 ismrcd2 ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) → 𝐹 = ( mrCls ‘ dom ( 𝐹 ∩ I ) ) )
82 37 38 63 79 80 ismrcd1 ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) → dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) )
83 fvssunirn ( Moore ‘ 𝐵 ) ⊆ ran Moore
84 1 fndmi dom mrCls = ran Moore
85 83 84 sseqtrri ( Moore ‘ 𝐵 ) ⊆ dom mrCls
86 funfvima2 ( ( Fun mrCls ∧ ( Moore ‘ 𝐵 ) ⊆ dom mrCls ) → ( dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) → ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ∈ ( mrCls “ ( Moore ‘ 𝐵 ) ) ) )
87 3 85 86 mp2an ( dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) → ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ∈ ( mrCls “ ( Moore ‘ 𝐵 ) ) )
88 82 87 syl ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) → ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ∈ ( mrCls “ ( Moore ‘ 𝐵 ) ) )
89 81 88 eqeltrd ( ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) → 𝐹 ∈ ( mrCls “ ( Moore ‘ 𝐵 ) ) )
90 36 89 impbii ( 𝐹 ∈ ( mrCls “ ( Moore ‘ 𝐵 ) ) ↔ ( 𝐵 ∈ V ∧ 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝑥 ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ∧ ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ) ) )