Step |
Hyp |
Ref |
Expression |
1 |
|
fnmrc |
|- mrCls Fn U. ran Moore |
2 |
|
fnfun |
|- ( mrCls Fn U. ran Moore -> Fun mrCls ) |
3 |
1 2
|
ax-mp |
|- Fun mrCls |
4 |
|
fvelima |
|- ( ( Fun mrCls /\ F e. ( mrCls " ( Moore ` B ) ) ) -> E. z e. ( Moore ` B ) ( mrCls ` z ) = F ) |
5 |
3 4
|
mpan |
|- ( F e. ( mrCls " ( Moore ` B ) ) -> E. z e. ( Moore ` B ) ( mrCls ` z ) = F ) |
6 |
|
elfvex |
|- ( z e. ( Moore ` B ) -> B e. _V ) |
7 |
|
eqid |
|- ( mrCls ` z ) = ( mrCls ` z ) |
8 |
7
|
mrcf |
|- ( z e. ( Moore ` B ) -> ( mrCls ` z ) : ~P B --> z ) |
9 |
|
mresspw |
|- ( z e. ( Moore ` B ) -> z C_ ~P B ) |
10 |
8 9
|
fssd |
|- ( z e. ( Moore ` B ) -> ( mrCls ` z ) : ~P B --> ~P B ) |
11 |
7
|
mrcssid |
|- ( ( z e. ( Moore ` B ) /\ x C_ B ) -> x C_ ( ( mrCls ` z ) ` x ) ) |
12 |
11
|
adantrr |
|- ( ( z e. ( Moore ` B ) /\ ( x C_ B /\ y C_ x ) ) -> x C_ ( ( mrCls ` z ) ` x ) ) |
13 |
7
|
mrcss |
|- ( ( z e. ( Moore ` B ) /\ y C_ x /\ x C_ B ) -> ( ( mrCls ` z ) ` y ) C_ ( ( mrCls ` z ) ` x ) ) |
14 |
13
|
3expb |
|- ( ( z e. ( Moore ` B ) /\ ( y C_ x /\ x C_ B ) ) -> ( ( mrCls ` z ) ` y ) C_ ( ( mrCls ` z ) ` x ) ) |
15 |
14
|
ancom2s |
|- ( ( z e. ( Moore ` B ) /\ ( x C_ B /\ y C_ x ) ) -> ( ( mrCls ` z ) ` y ) C_ ( ( mrCls ` z ) ` x ) ) |
16 |
7
|
mrcidm |
|- ( ( z e. ( Moore ` B ) /\ x C_ B ) -> ( ( mrCls ` z ) ` ( ( mrCls ` z ) ` x ) ) = ( ( mrCls ` z ) ` x ) ) |
17 |
16
|
adantrr |
|- ( ( z e. ( Moore ` B ) /\ ( x C_ B /\ y C_ x ) ) -> ( ( mrCls ` z ) ` ( ( mrCls ` z ) ` x ) ) = ( ( mrCls ` z ) ` x ) ) |
18 |
12 15 17
|
3jca |
|- ( ( z e. ( Moore ` B ) /\ ( x C_ B /\ y C_ x ) ) -> ( x C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` y ) C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` ( ( mrCls ` z ) ` x ) ) = ( ( mrCls ` z ) ` x ) ) ) |
19 |
18
|
ex |
|- ( z e. ( Moore ` B ) -> ( ( x C_ B /\ y C_ x ) -> ( x C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` y ) C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` ( ( mrCls ` z ) ` x ) ) = ( ( mrCls ` z ) ` x ) ) ) ) |
20 |
19
|
alrimivv |
|- ( z e. ( Moore ` B ) -> A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` y ) C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` ( ( mrCls ` z ) ` x ) ) = ( ( mrCls ` z ) ` x ) ) ) ) |
21 |
6 10 20
|
3jca |
|- ( z e. ( Moore ` B ) -> ( B e. _V /\ ( mrCls ` z ) : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` y ) C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` ( ( mrCls ` z ) ` x ) ) = ( ( mrCls ` z ) ` x ) ) ) ) ) |
22 |
|
feq1 |
|- ( ( mrCls ` z ) = F -> ( ( mrCls ` z ) : ~P B --> ~P B <-> F : ~P B --> ~P B ) ) |
23 |
|
fveq1 |
|- ( ( mrCls ` z ) = F -> ( ( mrCls ` z ) ` x ) = ( F ` x ) ) |
24 |
23
|
sseq2d |
|- ( ( mrCls ` z ) = F -> ( x C_ ( ( mrCls ` z ) ` x ) <-> x C_ ( F ` x ) ) ) |
25 |
|
fveq1 |
|- ( ( mrCls ` z ) = F -> ( ( mrCls ` z ) ` y ) = ( F ` y ) ) |
26 |
25 23
|
sseq12d |
|- ( ( mrCls ` z ) = F -> ( ( ( mrCls ` z ) ` y ) C_ ( ( mrCls ` z ) ` x ) <-> ( F ` y ) C_ ( F ` x ) ) ) |
27 |
|
id |
|- ( ( mrCls ` z ) = F -> ( mrCls ` z ) = F ) |
28 |
27 23
|
fveq12d |
|- ( ( mrCls ` z ) = F -> ( ( mrCls ` z ) ` ( ( mrCls ` z ) ` x ) ) = ( F ` ( F ` x ) ) ) |
29 |
28 23
|
eqeq12d |
|- ( ( mrCls ` z ) = F -> ( ( ( mrCls ` z ) ` ( ( mrCls ` z ) ` x ) ) = ( ( mrCls ` z ) ` x ) <-> ( F ` ( F ` x ) ) = ( F ` x ) ) ) |
30 |
24 26 29
|
3anbi123d |
|- ( ( mrCls ` z ) = F -> ( ( x C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` y ) C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` ( ( mrCls ` z ) ` x ) ) = ( ( mrCls ` z ) ` x ) ) <-> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) |
31 |
30
|
imbi2d |
|- ( ( mrCls ` z ) = F -> ( ( ( x C_ B /\ y C_ x ) -> ( x C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` y ) C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` ( ( mrCls ` z ) ` x ) ) = ( ( mrCls ` z ) ` x ) ) ) <-> ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) ) |
32 |
31
|
2albidv |
|- ( ( mrCls ` z ) = F -> ( A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` y ) C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` ( ( mrCls ` z ) ` x ) ) = ( ( mrCls ` z ) ` x ) ) ) <-> A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) ) |
33 |
22 32
|
3anbi23d |
|- ( ( mrCls ` z ) = F -> ( ( B e. _V /\ ( mrCls ` z ) : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` y ) C_ ( ( mrCls ` z ) ` x ) /\ ( ( mrCls ` z ) ` ( ( mrCls ` z ) ` x ) ) = ( ( mrCls ` z ) ` x ) ) ) ) <-> ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) ) ) |
34 |
21 33
|
syl5ibcom |
|- ( z e. ( Moore ` B ) -> ( ( mrCls ` z ) = F -> ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) ) ) |
35 |
34
|
rexlimiv |
|- ( E. z e. ( Moore ` B ) ( mrCls ` z ) = F -> ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) ) |
36 |
5 35
|
syl |
|- ( F e. ( mrCls " ( Moore ` B ) ) -> ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) ) |
37 |
|
simp1 |
|- ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) -> B e. _V ) |
38 |
|
simp2 |
|- ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) -> F : ~P B --> ~P B ) |
39 |
|
ssid |
|- z C_ z |
40 |
|
3simpb |
|- ( ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) -> ( x C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) |
41 |
40
|
imim2i |
|- ( ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) -> ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) |
42 |
41
|
2alimi |
|- ( A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) -> A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) |
43 |
|
sseq1 |
|- ( x = z -> ( x C_ B <-> z C_ B ) ) |
44 |
43
|
adantr |
|- ( ( x = z /\ y = z ) -> ( x C_ B <-> z C_ B ) ) |
45 |
|
sseq12 |
|- ( ( y = z /\ x = z ) -> ( y C_ x <-> z C_ z ) ) |
46 |
45
|
ancoms |
|- ( ( x = z /\ y = z ) -> ( y C_ x <-> z C_ z ) ) |
47 |
44 46
|
anbi12d |
|- ( ( x = z /\ y = z ) -> ( ( x C_ B /\ y C_ x ) <-> ( z C_ B /\ z C_ z ) ) ) |
48 |
|
id |
|- ( x = z -> x = z ) |
49 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
50 |
48 49
|
sseq12d |
|- ( x = z -> ( x C_ ( F ` x ) <-> z C_ ( F ` z ) ) ) |
51 |
50
|
adantr |
|- ( ( x = z /\ y = z ) -> ( x C_ ( F ` x ) <-> z C_ ( F ` z ) ) ) |
52 |
|
2fveq3 |
|- ( x = z -> ( F ` ( F ` x ) ) = ( F ` ( F ` z ) ) ) |
53 |
52 49
|
eqeq12d |
|- ( x = z -> ( ( F ` ( F ` x ) ) = ( F ` x ) <-> ( F ` ( F ` z ) ) = ( F ` z ) ) ) |
54 |
53
|
adantr |
|- ( ( x = z /\ y = z ) -> ( ( F ` ( F ` x ) ) = ( F ` x ) <-> ( F ` ( F ` z ) ) = ( F ` z ) ) ) |
55 |
51 54
|
anbi12d |
|- ( ( x = z /\ y = z ) -> ( ( x C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) <-> ( z C_ ( F ` z ) /\ ( F ` ( F ` z ) ) = ( F ` z ) ) ) ) |
56 |
47 55
|
imbi12d |
|- ( ( x = z /\ y = z ) -> ( ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) <-> ( ( z C_ B /\ z C_ z ) -> ( z C_ ( F ` z ) /\ ( F ` ( F ` z ) ) = ( F ` z ) ) ) ) ) |
57 |
56
|
spc2gv |
|- ( ( z e. _V /\ z e. _V ) -> ( A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) -> ( ( z C_ B /\ z C_ z ) -> ( z C_ ( F ` z ) /\ ( F ` ( F ` z ) ) = ( F ` z ) ) ) ) ) |
58 |
57
|
el2v |
|- ( A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) -> ( ( z C_ B /\ z C_ z ) -> ( z C_ ( F ` z ) /\ ( F ` ( F ` z ) ) = ( F ` z ) ) ) ) |
59 |
42 58
|
syl |
|- ( A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) -> ( ( z C_ B /\ z C_ z ) -> ( z C_ ( F ` z ) /\ ( F ` ( F ` z ) ) = ( F ` z ) ) ) ) |
60 |
59
|
3ad2ant3 |
|- ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) -> ( ( z C_ B /\ z C_ z ) -> ( z C_ ( F ` z ) /\ ( F ` ( F ` z ) ) = ( F ` z ) ) ) ) |
61 |
39 60
|
mpan2i |
|- ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) -> ( z C_ B -> ( z C_ ( F ` z ) /\ ( F ` ( F ` z ) ) = ( F ` z ) ) ) ) |
62 |
61
|
imp |
|- ( ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) /\ z C_ B ) -> ( z C_ ( F ` z ) /\ ( F ` ( F ` z ) ) = ( F ` z ) ) ) |
63 |
62
|
simpld |
|- ( ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) /\ z C_ B ) -> z C_ ( F ` z ) ) |
64 |
|
simp2 |
|- ( ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) -> ( F ` y ) C_ ( F ` x ) ) |
65 |
64
|
imim2i |
|- ( ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) -> ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) ) |
66 |
65
|
2alimi |
|- ( A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) -> A. x A. y ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) ) |
67 |
66
|
3ad2ant3 |
|- ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) -> A. x A. y ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) ) |
68 |
43
|
adantr |
|- ( ( x = z /\ y = w ) -> ( x C_ B <-> z C_ B ) ) |
69 |
|
sseq12 |
|- ( ( y = w /\ x = z ) -> ( y C_ x <-> w C_ z ) ) |
70 |
69
|
ancoms |
|- ( ( x = z /\ y = w ) -> ( y C_ x <-> w C_ z ) ) |
71 |
68 70
|
anbi12d |
|- ( ( x = z /\ y = w ) -> ( ( x C_ B /\ y C_ x ) <-> ( z C_ B /\ w C_ z ) ) ) |
72 |
|
fveq2 |
|- ( y = w -> ( F ` y ) = ( F ` w ) ) |
73 |
|
sseq12 |
|- ( ( ( F ` y ) = ( F ` w ) /\ ( F ` x ) = ( F ` z ) ) -> ( ( F ` y ) C_ ( F ` x ) <-> ( F ` w ) C_ ( F ` z ) ) ) |
74 |
72 49 73
|
syl2anr |
|- ( ( x = z /\ y = w ) -> ( ( F ` y ) C_ ( F ` x ) <-> ( F ` w ) C_ ( F ` z ) ) ) |
75 |
71 74
|
imbi12d |
|- ( ( x = z /\ y = w ) -> ( ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) <-> ( ( z C_ B /\ w C_ z ) -> ( F ` w ) C_ ( F ` z ) ) ) ) |
76 |
75
|
spc2gv |
|- ( ( z e. _V /\ w e. _V ) -> ( A. x A. y ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) -> ( ( z C_ B /\ w C_ z ) -> ( F ` w ) C_ ( F ` z ) ) ) ) |
77 |
76
|
el2v |
|- ( A. x A. y ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) -> ( ( z C_ B /\ w C_ z ) -> ( F ` w ) C_ ( F ` z ) ) ) |
78 |
67 77
|
syl |
|- ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) -> ( ( z C_ B /\ w C_ z ) -> ( F ` w ) C_ ( F ` z ) ) ) |
79 |
78
|
3impib |
|- ( ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) /\ z C_ B /\ w C_ z ) -> ( F ` w ) C_ ( F ` z ) ) |
80 |
62
|
simprd |
|- ( ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) /\ z C_ B ) -> ( F ` ( F ` z ) ) = ( F ` z ) ) |
81 |
37 38 63 79 80
|
ismrcd2 |
|- ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) -> F = ( mrCls ` dom ( F i^i _I ) ) ) |
82 |
37 38 63 79 80
|
ismrcd1 |
|- ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) -> dom ( F i^i _I ) e. ( Moore ` B ) ) |
83 |
|
fvssunirn |
|- ( Moore ` B ) C_ U. ran Moore |
84 |
1
|
fndmi |
|- dom mrCls = U. ran Moore |
85 |
83 84
|
sseqtrri |
|- ( Moore ` B ) C_ dom mrCls |
86 |
|
funfvima2 |
|- ( ( Fun mrCls /\ ( Moore ` B ) C_ dom mrCls ) -> ( dom ( F i^i _I ) e. ( Moore ` B ) -> ( mrCls ` dom ( F i^i _I ) ) e. ( mrCls " ( Moore ` B ) ) ) ) |
87 |
3 85 86
|
mp2an |
|- ( dom ( F i^i _I ) e. ( Moore ` B ) -> ( mrCls ` dom ( F i^i _I ) ) e. ( mrCls " ( Moore ` B ) ) ) |
88 |
82 87
|
syl |
|- ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) -> ( mrCls ` dom ( F i^i _I ) ) e. ( mrCls " ( Moore ` B ) ) ) |
89 |
81 88
|
eqeltrd |
|- ( ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) -> F e. ( mrCls " ( Moore ` B ) ) ) |
90 |
36 89
|
impbii |
|- ( F e. ( mrCls " ( Moore ` B ) ) <-> ( B e. _V /\ F : ~P B --> ~P B /\ A. x A. y ( ( x C_ B /\ y C_ x ) -> ( x C_ ( F ` x ) /\ ( F ` y ) C_ ( F ` x ) /\ ( F ` ( F ` x ) ) = ( F ` x ) ) ) ) ) |