| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismrcd.b |
|- ( ph -> B e. V ) |
| 2 |
|
ismrcd.f |
|- ( ph -> F : ~P B --> ~P B ) |
| 3 |
|
ismrcd.e |
|- ( ( ph /\ x C_ B ) -> x C_ ( F ` x ) ) |
| 4 |
|
ismrcd.m |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) |
| 5 |
|
ismrcd.i |
|- ( ( ph /\ x C_ B ) -> ( F ` ( F ` x ) ) = ( F ` x ) ) |
| 6 |
|
inss1 |
|- ( F i^i _I ) C_ F |
| 7 |
|
dmss |
|- ( ( F i^i _I ) C_ F -> dom ( F i^i _I ) C_ dom F ) |
| 8 |
6 7
|
ax-mp |
|- dom ( F i^i _I ) C_ dom F |
| 9 |
8 2
|
fssdm |
|- ( ph -> dom ( F i^i _I ) C_ ~P B ) |
| 10 |
|
ssid |
|- B C_ B |
| 11 |
|
elpwg |
|- ( B e. V -> ( B e. ~P B <-> B C_ B ) ) |
| 12 |
1 11
|
syl |
|- ( ph -> ( B e. ~P B <-> B C_ B ) ) |
| 13 |
10 12
|
mpbiri |
|- ( ph -> B e. ~P B ) |
| 14 |
2 13
|
ffvelcdmd |
|- ( ph -> ( F ` B ) e. ~P B ) |
| 15 |
14
|
elpwid |
|- ( ph -> ( F ` B ) C_ B ) |
| 16 |
|
velpw |
|- ( x e. ~P B <-> x C_ B ) |
| 17 |
16 3
|
sylan2b |
|- ( ( ph /\ x e. ~P B ) -> x C_ ( F ` x ) ) |
| 18 |
17
|
ralrimiva |
|- ( ph -> A. x e. ~P B x C_ ( F ` x ) ) |
| 19 |
|
id |
|- ( x = B -> x = B ) |
| 20 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
| 21 |
19 20
|
sseq12d |
|- ( x = B -> ( x C_ ( F ` x ) <-> B C_ ( F ` B ) ) ) |
| 22 |
21
|
rspcva |
|- ( ( B e. ~P B /\ A. x e. ~P B x C_ ( F ` x ) ) -> B C_ ( F ` B ) ) |
| 23 |
13 18 22
|
syl2anc |
|- ( ph -> B C_ ( F ` B ) ) |
| 24 |
15 23
|
eqssd |
|- ( ph -> ( F ` B ) = B ) |
| 25 |
2
|
ffnd |
|- ( ph -> F Fn ~P B ) |
| 26 |
|
fnelfp |
|- ( ( F Fn ~P B /\ B e. ~P B ) -> ( B e. dom ( F i^i _I ) <-> ( F ` B ) = B ) ) |
| 27 |
25 13 26
|
syl2anc |
|- ( ph -> ( B e. dom ( F i^i _I ) <-> ( F ` B ) = B ) ) |
| 28 |
24 27
|
mpbird |
|- ( ph -> B e. dom ( F i^i _I ) ) |
| 29 |
|
simp2 |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> z C_ dom ( F i^i _I ) ) |
| 30 |
9
|
3ad2ant1 |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> dom ( F i^i _I ) C_ ~P B ) |
| 31 |
29 30
|
sstrd |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> z C_ ~P B ) |
| 32 |
|
simp3 |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> z =/= (/) ) |
| 33 |
|
intssuni2 |
|- ( ( z C_ ~P B /\ z =/= (/) ) -> |^| z C_ U. ~P B ) |
| 34 |
31 32 33
|
syl2anc |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> |^| z C_ U. ~P B ) |
| 35 |
|
unipw |
|- U. ~P B = B |
| 36 |
34 35
|
sseqtrdi |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> |^| z C_ B ) |
| 37 |
|
intex |
|- ( z =/= (/) <-> |^| z e. _V ) |
| 38 |
|
elpwg |
|- ( |^| z e. _V -> ( |^| z e. ~P B <-> |^| z C_ B ) ) |
| 39 |
37 38
|
sylbi |
|- ( z =/= (/) -> ( |^| z e. ~P B <-> |^| z C_ B ) ) |
| 40 |
39
|
3ad2ant3 |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> ( |^| z e. ~P B <-> |^| z C_ B ) ) |
| 41 |
36 40
|
mpbird |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> |^| z e. ~P B ) |
| 42 |
41
|
adantr |
|- ( ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) /\ x e. z ) -> |^| z e. ~P B ) |
| 43 |
4
|
3expib |
|- ( ph -> ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) ) |
| 44 |
43
|
alrimiv |
|- ( ph -> A. y ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) ) |
| 45 |
44
|
3ad2ant1 |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> A. y ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) ) |
| 46 |
45
|
adantr |
|- ( ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) /\ x e. z ) -> A. y ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) ) |
| 47 |
31
|
sselda |
|- ( ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) /\ x e. z ) -> x e. ~P B ) |
| 48 |
47
|
elpwid |
|- ( ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) /\ x e. z ) -> x C_ B ) |
| 49 |
|
intss1 |
|- ( x e. z -> |^| z C_ x ) |
| 50 |
49
|
adantl |
|- ( ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) /\ x e. z ) -> |^| z C_ x ) |
| 51 |
48 50
|
jca |
|- ( ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) /\ x e. z ) -> ( x C_ B /\ |^| z C_ x ) ) |
| 52 |
|
sseq1 |
|- ( y = |^| z -> ( y C_ x <-> |^| z C_ x ) ) |
| 53 |
52
|
anbi2d |
|- ( y = |^| z -> ( ( x C_ B /\ y C_ x ) <-> ( x C_ B /\ |^| z C_ x ) ) ) |
| 54 |
|
fveq2 |
|- ( y = |^| z -> ( F ` y ) = ( F ` |^| z ) ) |
| 55 |
54
|
sseq1d |
|- ( y = |^| z -> ( ( F ` y ) C_ ( F ` x ) <-> ( F ` |^| z ) C_ ( F ` x ) ) ) |
| 56 |
53 55
|
imbi12d |
|- ( y = |^| z -> ( ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) <-> ( ( x C_ B /\ |^| z C_ x ) -> ( F ` |^| z ) C_ ( F ` x ) ) ) ) |
| 57 |
56
|
spcgv |
|- ( |^| z e. ~P B -> ( A. y ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) -> ( ( x C_ B /\ |^| z C_ x ) -> ( F ` |^| z ) C_ ( F ` x ) ) ) ) |
| 58 |
42 46 51 57
|
syl3c |
|- ( ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) /\ x e. z ) -> ( F ` |^| z ) C_ ( F ` x ) ) |
| 59 |
29
|
sselda |
|- ( ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) /\ x e. z ) -> x e. dom ( F i^i _I ) ) |
| 60 |
25
|
3ad2ant1 |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> F Fn ~P B ) |
| 61 |
60
|
adantr |
|- ( ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) /\ x e. z ) -> F Fn ~P B ) |
| 62 |
|
fnelfp |
|- ( ( F Fn ~P B /\ x e. ~P B ) -> ( x e. dom ( F i^i _I ) <-> ( F ` x ) = x ) ) |
| 63 |
61 47 62
|
syl2anc |
|- ( ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) /\ x e. z ) -> ( x e. dom ( F i^i _I ) <-> ( F ` x ) = x ) ) |
| 64 |
59 63
|
mpbid |
|- ( ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) /\ x e. z ) -> ( F ` x ) = x ) |
| 65 |
58 64
|
sseqtrd |
|- ( ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) /\ x e. z ) -> ( F ` |^| z ) C_ x ) |
| 66 |
65
|
ralrimiva |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> A. x e. z ( F ` |^| z ) C_ x ) |
| 67 |
|
ssint |
|- ( ( F ` |^| z ) C_ |^| z <-> A. x e. z ( F ` |^| z ) C_ x ) |
| 68 |
66 67
|
sylibr |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> ( F ` |^| z ) C_ |^| z ) |
| 69 |
18
|
3ad2ant1 |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> A. x e. ~P B x C_ ( F ` x ) ) |
| 70 |
|
id |
|- ( x = |^| z -> x = |^| z ) |
| 71 |
|
fveq2 |
|- ( x = |^| z -> ( F ` x ) = ( F ` |^| z ) ) |
| 72 |
70 71
|
sseq12d |
|- ( x = |^| z -> ( x C_ ( F ` x ) <-> |^| z C_ ( F ` |^| z ) ) ) |
| 73 |
72
|
rspcva |
|- ( ( |^| z e. ~P B /\ A. x e. ~P B x C_ ( F ` x ) ) -> |^| z C_ ( F ` |^| z ) ) |
| 74 |
41 69 73
|
syl2anc |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> |^| z C_ ( F ` |^| z ) ) |
| 75 |
68 74
|
eqssd |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> ( F ` |^| z ) = |^| z ) |
| 76 |
|
fnelfp |
|- ( ( F Fn ~P B /\ |^| z e. ~P B ) -> ( |^| z e. dom ( F i^i _I ) <-> ( F ` |^| z ) = |^| z ) ) |
| 77 |
60 41 76
|
syl2anc |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> ( |^| z e. dom ( F i^i _I ) <-> ( F ` |^| z ) = |^| z ) ) |
| 78 |
75 77
|
mpbird |
|- ( ( ph /\ z C_ dom ( F i^i _I ) /\ z =/= (/) ) -> |^| z e. dom ( F i^i _I ) ) |
| 79 |
9 28 78
|
ismred |
|- ( ph -> dom ( F i^i _I ) e. ( Moore ` B ) ) |