Step |
Hyp |
Ref |
Expression |
1 |
|
ismrcd.b |
|- ( ph -> B e. V ) |
2 |
|
ismrcd.f |
|- ( ph -> F : ~P B --> ~P B ) |
3 |
|
ismrcd.e |
|- ( ( ph /\ x C_ B ) -> x C_ ( F ` x ) ) |
4 |
|
ismrcd.m |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) |
5 |
|
ismrcd.i |
|- ( ( ph /\ x C_ B ) -> ( F ` ( F ` x ) ) = ( F ` x ) ) |
6 |
2
|
ffnd |
|- ( ph -> F Fn ~P B ) |
7 |
1 2 3 4 5
|
ismrcd1 |
|- ( ph -> dom ( F i^i _I ) e. ( Moore ` B ) ) |
8 |
|
eqid |
|- ( mrCls ` dom ( F i^i _I ) ) = ( mrCls ` dom ( F i^i _I ) ) |
9 |
8
|
mrcf |
|- ( dom ( F i^i _I ) e. ( Moore ` B ) -> ( mrCls ` dom ( F i^i _I ) ) : ~P B --> dom ( F i^i _I ) ) |
10 |
|
ffn |
|- ( ( mrCls ` dom ( F i^i _I ) ) : ~P B --> dom ( F i^i _I ) -> ( mrCls ` dom ( F i^i _I ) ) Fn ~P B ) |
11 |
7 9 10
|
3syl |
|- ( ph -> ( mrCls ` dom ( F i^i _I ) ) Fn ~P B ) |
12 |
7 8
|
mrcssvd |
|- ( ph -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B ) |
13 |
12
|
adantr |
|- ( ( ph /\ z e. ~P B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B ) |
14 |
|
elpwi |
|- ( z e. ~P B -> z C_ B ) |
15 |
8
|
mrcssid |
|- ( ( dom ( F i^i _I ) e. ( Moore ` B ) /\ z C_ B ) -> z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) |
16 |
7 14 15
|
syl2an |
|- ( ( ph /\ z e. ~P B ) -> z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) |
17 |
4
|
3expib |
|- ( ph -> ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) ) |
18 |
17
|
alrimivv |
|- ( ph -> A. y A. x ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) ) |
19 |
|
vex |
|- z e. _V |
20 |
|
fvex |
|- ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. _V |
21 |
|
sseq1 |
|- ( x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) -> ( x C_ B <-> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B ) ) |
22 |
21
|
adantl |
|- ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( x C_ B <-> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B ) ) |
23 |
|
sseq12 |
|- ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( y C_ x <-> z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) |
24 |
22 23
|
anbi12d |
|- ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( ( x C_ B /\ y C_ x ) <-> ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) |
25 |
|
fveq2 |
|- ( y = z -> ( F ` y ) = ( F ` z ) ) |
26 |
|
fveq2 |
|- ( x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) -> ( F ` x ) = ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) |
27 |
|
sseq12 |
|- ( ( ( F ` y ) = ( F ` z ) /\ ( F ` x ) = ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) -> ( ( F ` y ) C_ ( F ` x ) <-> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) |
28 |
25 26 27
|
syl2an |
|- ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( ( F ` y ) C_ ( F ` x ) <-> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) |
29 |
24 28
|
imbi12d |
|- ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) <-> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) ) |
30 |
29
|
spc2gv |
|- ( ( z e. _V /\ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. _V ) -> ( A. y A. x ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) -> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) ) |
31 |
19 20 30
|
mp2an |
|- ( A. y A. x ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) -> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) |
32 |
18 31
|
syl |
|- ( ph -> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) |
33 |
32
|
adantr |
|- ( ( ph /\ z e. ~P B ) -> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) |
34 |
13 16 33
|
mp2and |
|- ( ( ph /\ z e. ~P B ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) |
35 |
8
|
mrccl |
|- ( ( dom ( F i^i _I ) e. ( Moore ` B ) /\ z C_ B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. dom ( F i^i _I ) ) |
36 |
7 14 35
|
syl2an |
|- ( ( ph /\ z e. ~P B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. dom ( F i^i _I ) ) |
37 |
6
|
adantr |
|- ( ( ph /\ z e. ~P B ) -> F Fn ~P B ) |
38 |
20
|
elpw |
|- ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. ~P B <-> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B ) |
39 |
12 38
|
sylibr |
|- ( ph -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. ~P B ) |
40 |
39
|
adantr |
|- ( ( ph /\ z e. ~P B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. ~P B ) |
41 |
|
fnelfp |
|- ( ( F Fn ~P B /\ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. ~P B ) -> ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. dom ( F i^i _I ) <-> ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) |
42 |
37 40 41
|
syl2anc |
|- ( ( ph /\ z e. ~P B ) -> ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. dom ( F i^i _I ) <-> ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) |
43 |
36 42
|
mpbid |
|- ( ( ph /\ z e. ~P B ) -> ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) |
44 |
34 43
|
sseqtrd |
|- ( ( ph /\ z e. ~P B ) -> ( F ` z ) C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) |
45 |
7
|
adantr |
|- ( ( ph /\ z e. ~P B ) -> dom ( F i^i _I ) e. ( Moore ` B ) ) |
46 |
|
sseq1 |
|- ( x = z -> ( x C_ B <-> z C_ B ) ) |
47 |
46
|
anbi2d |
|- ( x = z -> ( ( ph /\ x C_ B ) <-> ( ph /\ z C_ B ) ) ) |
48 |
|
id |
|- ( x = z -> x = z ) |
49 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
50 |
48 49
|
sseq12d |
|- ( x = z -> ( x C_ ( F ` x ) <-> z C_ ( F ` z ) ) ) |
51 |
47 50
|
imbi12d |
|- ( x = z -> ( ( ( ph /\ x C_ B ) -> x C_ ( F ` x ) ) <-> ( ( ph /\ z C_ B ) -> z C_ ( F ` z ) ) ) ) |
52 |
51 3
|
chvarvv |
|- ( ( ph /\ z C_ B ) -> z C_ ( F ` z ) ) |
53 |
14 52
|
sylan2 |
|- ( ( ph /\ z e. ~P B ) -> z C_ ( F ` z ) ) |
54 |
|
2fveq3 |
|- ( x = z -> ( F ` ( F ` x ) ) = ( F ` ( F ` z ) ) ) |
55 |
54 49
|
eqeq12d |
|- ( x = z -> ( ( F ` ( F ` x ) ) = ( F ` x ) <-> ( F ` ( F ` z ) ) = ( F ` z ) ) ) |
56 |
47 55
|
imbi12d |
|- ( x = z -> ( ( ( ph /\ x C_ B ) -> ( F ` ( F ` x ) ) = ( F ` x ) ) <-> ( ( ph /\ z C_ B ) -> ( F ` ( F ` z ) ) = ( F ` z ) ) ) ) |
57 |
56 5
|
chvarvv |
|- ( ( ph /\ z C_ B ) -> ( F ` ( F ` z ) ) = ( F ` z ) ) |
58 |
14 57
|
sylan2 |
|- ( ( ph /\ z e. ~P B ) -> ( F ` ( F ` z ) ) = ( F ` z ) ) |
59 |
2
|
ffvelrnda |
|- ( ( ph /\ z e. ~P B ) -> ( F ` z ) e. ~P B ) |
60 |
|
fnelfp |
|- ( ( F Fn ~P B /\ ( F ` z ) e. ~P B ) -> ( ( F ` z ) e. dom ( F i^i _I ) <-> ( F ` ( F ` z ) ) = ( F ` z ) ) ) |
61 |
37 59 60
|
syl2anc |
|- ( ( ph /\ z e. ~P B ) -> ( ( F ` z ) e. dom ( F i^i _I ) <-> ( F ` ( F ` z ) ) = ( F ` z ) ) ) |
62 |
58 61
|
mpbird |
|- ( ( ph /\ z e. ~P B ) -> ( F ` z ) e. dom ( F i^i _I ) ) |
63 |
8
|
mrcsscl |
|- ( ( dom ( F i^i _I ) e. ( Moore ` B ) /\ z C_ ( F ` z ) /\ ( F ` z ) e. dom ( F i^i _I ) ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ ( F ` z ) ) |
64 |
45 53 62 63
|
syl3anc |
|- ( ( ph /\ z e. ~P B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ ( F ` z ) ) |
65 |
44 64
|
eqssd |
|- ( ( ph /\ z e. ~P B ) -> ( F ` z ) = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) |
66 |
6 11 65
|
eqfnfvd |
|- ( ph -> F = ( mrCls ` dom ( F i^i _I ) ) ) |