Metamath Proof Explorer


Theorem ismrcd2

Description: Second half of ismrcd1 . (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses ismrcd.b
|- ( ph -> B e. V )
ismrcd.f
|- ( ph -> F : ~P B --> ~P B )
ismrcd.e
|- ( ( ph /\ x C_ B ) -> x C_ ( F ` x ) )
ismrcd.m
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) )
ismrcd.i
|- ( ( ph /\ x C_ B ) -> ( F ` ( F ` x ) ) = ( F ` x ) )
Assertion ismrcd2
|- ( ph -> F = ( mrCls ` dom ( F i^i _I ) ) )

Proof

Step Hyp Ref Expression
1 ismrcd.b
 |-  ( ph -> B e. V )
2 ismrcd.f
 |-  ( ph -> F : ~P B --> ~P B )
3 ismrcd.e
 |-  ( ( ph /\ x C_ B ) -> x C_ ( F ` x ) )
4 ismrcd.m
 |-  ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) )
5 ismrcd.i
 |-  ( ( ph /\ x C_ B ) -> ( F ` ( F ` x ) ) = ( F ` x ) )
6 2 ffnd
 |-  ( ph -> F Fn ~P B )
7 1 2 3 4 5 ismrcd1
 |-  ( ph -> dom ( F i^i _I ) e. ( Moore ` B ) )
8 eqid
 |-  ( mrCls ` dom ( F i^i _I ) ) = ( mrCls ` dom ( F i^i _I ) )
9 8 mrcf
 |-  ( dom ( F i^i _I ) e. ( Moore ` B ) -> ( mrCls ` dom ( F i^i _I ) ) : ~P B --> dom ( F i^i _I ) )
10 ffn
 |-  ( ( mrCls ` dom ( F i^i _I ) ) : ~P B --> dom ( F i^i _I ) -> ( mrCls ` dom ( F i^i _I ) ) Fn ~P B )
11 7 9 10 3syl
 |-  ( ph -> ( mrCls ` dom ( F i^i _I ) ) Fn ~P B )
12 7 8 mrcssvd
 |-  ( ph -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B )
13 12 adantr
 |-  ( ( ph /\ z e. ~P B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B )
14 elpwi
 |-  ( z e. ~P B -> z C_ B )
15 8 mrcssid
 |-  ( ( dom ( F i^i _I ) e. ( Moore ` B ) /\ z C_ B ) -> z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) )
16 7 14 15 syl2an
 |-  ( ( ph /\ z e. ~P B ) -> z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) )
17 4 3expib
 |-  ( ph -> ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) )
18 17 alrimivv
 |-  ( ph -> A. y A. x ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) )
19 vex
 |-  z e. _V
20 fvex
 |-  ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. _V
21 sseq1
 |-  ( x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) -> ( x C_ B <-> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B ) )
22 21 adantl
 |-  ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( x C_ B <-> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B ) )
23 sseq12
 |-  ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( y C_ x <-> z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) )
24 22 23 anbi12d
 |-  ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( ( x C_ B /\ y C_ x ) <-> ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) )
25 fveq2
 |-  ( y = z -> ( F ` y ) = ( F ` z ) )
26 fveq2
 |-  ( x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) -> ( F ` x ) = ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) )
27 sseq12
 |-  ( ( ( F ` y ) = ( F ` z ) /\ ( F ` x ) = ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) -> ( ( F ` y ) C_ ( F ` x ) <-> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) )
28 25 26 27 syl2an
 |-  ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( ( F ` y ) C_ ( F ` x ) <-> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) )
29 24 28 imbi12d
 |-  ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) <-> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) )
30 29 spc2gv
 |-  ( ( z e. _V /\ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. _V ) -> ( A. y A. x ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) -> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) )
31 19 20 30 mp2an
 |-  ( A. y A. x ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) -> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) )
32 18 31 syl
 |-  ( ph -> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) )
33 32 adantr
 |-  ( ( ph /\ z e. ~P B ) -> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) )
34 13 16 33 mp2and
 |-  ( ( ph /\ z e. ~P B ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) )
35 8 mrccl
 |-  ( ( dom ( F i^i _I ) e. ( Moore ` B ) /\ z C_ B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. dom ( F i^i _I ) )
36 7 14 35 syl2an
 |-  ( ( ph /\ z e. ~P B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. dom ( F i^i _I ) )
37 6 adantr
 |-  ( ( ph /\ z e. ~P B ) -> F Fn ~P B )
38 20 elpw
 |-  ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. ~P B <-> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B )
39 12 38 sylibr
 |-  ( ph -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. ~P B )
40 39 adantr
 |-  ( ( ph /\ z e. ~P B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. ~P B )
41 fnelfp
 |-  ( ( F Fn ~P B /\ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. ~P B ) -> ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. dom ( F i^i _I ) <-> ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) )
42 37 40 41 syl2anc
 |-  ( ( ph /\ z e. ~P B ) -> ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. dom ( F i^i _I ) <-> ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) )
43 36 42 mpbid
 |-  ( ( ph /\ z e. ~P B ) -> ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) )
44 34 43 sseqtrd
 |-  ( ( ph /\ z e. ~P B ) -> ( F ` z ) C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) )
45 7 adantr
 |-  ( ( ph /\ z e. ~P B ) -> dom ( F i^i _I ) e. ( Moore ` B ) )
46 sseq1
 |-  ( x = z -> ( x C_ B <-> z C_ B ) )
47 46 anbi2d
 |-  ( x = z -> ( ( ph /\ x C_ B ) <-> ( ph /\ z C_ B ) ) )
48 id
 |-  ( x = z -> x = z )
49 fveq2
 |-  ( x = z -> ( F ` x ) = ( F ` z ) )
50 48 49 sseq12d
 |-  ( x = z -> ( x C_ ( F ` x ) <-> z C_ ( F ` z ) ) )
51 47 50 imbi12d
 |-  ( x = z -> ( ( ( ph /\ x C_ B ) -> x C_ ( F ` x ) ) <-> ( ( ph /\ z C_ B ) -> z C_ ( F ` z ) ) ) )
52 51 3 chvarvv
 |-  ( ( ph /\ z C_ B ) -> z C_ ( F ` z ) )
53 14 52 sylan2
 |-  ( ( ph /\ z e. ~P B ) -> z C_ ( F ` z ) )
54 2fveq3
 |-  ( x = z -> ( F ` ( F ` x ) ) = ( F ` ( F ` z ) ) )
55 54 49 eqeq12d
 |-  ( x = z -> ( ( F ` ( F ` x ) ) = ( F ` x ) <-> ( F ` ( F ` z ) ) = ( F ` z ) ) )
56 47 55 imbi12d
 |-  ( x = z -> ( ( ( ph /\ x C_ B ) -> ( F ` ( F ` x ) ) = ( F ` x ) ) <-> ( ( ph /\ z C_ B ) -> ( F ` ( F ` z ) ) = ( F ` z ) ) ) )
57 56 5 chvarvv
 |-  ( ( ph /\ z C_ B ) -> ( F ` ( F ` z ) ) = ( F ` z ) )
58 14 57 sylan2
 |-  ( ( ph /\ z e. ~P B ) -> ( F ` ( F ` z ) ) = ( F ` z ) )
59 2 ffvelrnda
 |-  ( ( ph /\ z e. ~P B ) -> ( F ` z ) e. ~P B )
60 fnelfp
 |-  ( ( F Fn ~P B /\ ( F ` z ) e. ~P B ) -> ( ( F ` z ) e. dom ( F i^i _I ) <-> ( F ` ( F ` z ) ) = ( F ` z ) ) )
61 37 59 60 syl2anc
 |-  ( ( ph /\ z e. ~P B ) -> ( ( F ` z ) e. dom ( F i^i _I ) <-> ( F ` ( F ` z ) ) = ( F ` z ) ) )
62 58 61 mpbird
 |-  ( ( ph /\ z e. ~P B ) -> ( F ` z ) e. dom ( F i^i _I ) )
63 8 mrcsscl
 |-  ( ( dom ( F i^i _I ) e. ( Moore ` B ) /\ z C_ ( F ` z ) /\ ( F ` z ) e. dom ( F i^i _I ) ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ ( F ` z ) )
64 45 53 62 63 syl3anc
 |-  ( ( ph /\ z e. ~P B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ ( F ` z ) )
65 44 64 eqssd
 |-  ( ( ph /\ z e. ~P B ) -> ( F ` z ) = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) )
66 6 11 65 eqfnfvd
 |-  ( ph -> F = ( mrCls ` dom ( F i^i _I ) ) )