| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismrcd.b |  |-  ( ph -> B e. V ) | 
						
							| 2 |  | ismrcd.f |  |-  ( ph -> F : ~P B --> ~P B ) | 
						
							| 3 |  | ismrcd.e |  |-  ( ( ph /\ x C_ B ) -> x C_ ( F ` x ) ) | 
						
							| 4 |  | ismrcd.m |  |-  ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) | 
						
							| 5 |  | ismrcd.i |  |-  ( ( ph /\ x C_ B ) -> ( F ` ( F ` x ) ) = ( F ` x ) ) | 
						
							| 6 | 2 | ffnd |  |-  ( ph -> F Fn ~P B ) | 
						
							| 7 | 1 2 3 4 5 | ismrcd1 |  |-  ( ph -> dom ( F i^i _I ) e. ( Moore ` B ) ) | 
						
							| 8 |  | eqid |  |-  ( mrCls ` dom ( F i^i _I ) ) = ( mrCls ` dom ( F i^i _I ) ) | 
						
							| 9 | 8 | mrcf |  |-  ( dom ( F i^i _I ) e. ( Moore ` B ) -> ( mrCls ` dom ( F i^i _I ) ) : ~P B --> dom ( F i^i _I ) ) | 
						
							| 10 |  | ffn |  |-  ( ( mrCls ` dom ( F i^i _I ) ) : ~P B --> dom ( F i^i _I ) -> ( mrCls ` dom ( F i^i _I ) ) Fn ~P B ) | 
						
							| 11 | 7 9 10 | 3syl |  |-  ( ph -> ( mrCls ` dom ( F i^i _I ) ) Fn ~P B ) | 
						
							| 12 | 7 8 | mrcssvd |  |-  ( ph -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ z e. ~P B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B ) | 
						
							| 14 |  | elpwi |  |-  ( z e. ~P B -> z C_ B ) | 
						
							| 15 | 8 | mrcssid |  |-  ( ( dom ( F i^i _I ) e. ( Moore ` B ) /\ z C_ B ) -> z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) | 
						
							| 16 | 7 14 15 | syl2an |  |-  ( ( ph /\ z e. ~P B ) -> z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) | 
						
							| 17 | 4 | 3expib |  |-  ( ph -> ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) ) | 
						
							| 18 | 17 | alrimivv |  |-  ( ph -> A. y A. x ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) ) | 
						
							| 19 |  | vex |  |-  z e. _V | 
						
							| 20 |  | fvex |  |-  ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. _V | 
						
							| 21 |  | sseq1 |  |-  ( x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) -> ( x C_ B <-> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( x C_ B <-> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B ) ) | 
						
							| 23 |  | sseq12 |  |-  ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( y C_ x <-> z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) | 
						
							| 24 | 22 23 | anbi12d |  |-  ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( ( x C_ B /\ y C_ x ) <-> ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) | 
						
							| 25 |  | fveq2 |  |-  ( y = z -> ( F ` y ) = ( F ` z ) ) | 
						
							| 26 |  | fveq2 |  |-  ( x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) -> ( F ` x ) = ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) | 
						
							| 27 |  | sseq12 |  |-  ( ( ( F ` y ) = ( F ` z ) /\ ( F ` x ) = ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) -> ( ( F ` y ) C_ ( F ` x ) <-> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) | 
						
							| 28 | 25 26 27 | syl2an |  |-  ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( ( F ` y ) C_ ( F ` x ) <-> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) | 
						
							| 29 | 24 28 | imbi12d |  |-  ( ( y = z /\ x = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) <-> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) ) | 
						
							| 30 | 29 | spc2gv |  |-  ( ( z e. _V /\ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. _V ) -> ( A. y A. x ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) -> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) ) | 
						
							| 31 | 19 20 30 | mp2an |  |-  ( A. y A. x ( ( x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) -> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) | 
						
							| 32 | 18 31 | syl |  |-  ( ph -> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ z e. ~P B ) -> ( ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B /\ z C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) ) | 
						
							| 34 | 13 16 33 | mp2and |  |-  ( ( ph /\ z e. ~P B ) -> ( F ` z ) C_ ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) | 
						
							| 35 | 8 | mrccl |  |-  ( ( dom ( F i^i _I ) e. ( Moore ` B ) /\ z C_ B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. dom ( F i^i _I ) ) | 
						
							| 36 | 7 14 35 | syl2an |  |-  ( ( ph /\ z e. ~P B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. dom ( F i^i _I ) ) | 
						
							| 37 | 6 | adantr |  |-  ( ( ph /\ z e. ~P B ) -> F Fn ~P B ) | 
						
							| 38 | 20 | elpw |  |-  ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. ~P B <-> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ B ) | 
						
							| 39 | 12 38 | sylibr |  |-  ( ph -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. ~P B ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ph /\ z e. ~P B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. ~P B ) | 
						
							| 41 |  | fnelfp |  |-  ( ( F Fn ~P B /\ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. ~P B ) -> ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. dom ( F i^i _I ) <-> ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) | 
						
							| 42 | 37 40 41 | syl2anc |  |-  ( ( ph /\ z e. ~P B ) -> ( ( ( mrCls ` dom ( F i^i _I ) ) ` z ) e. dom ( F i^i _I ) <-> ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) ) | 
						
							| 43 | 36 42 | mpbid |  |-  ( ( ph /\ z e. ~P B ) -> ( F ` ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) | 
						
							| 44 | 34 43 | sseqtrd |  |-  ( ( ph /\ z e. ~P B ) -> ( F ` z ) C_ ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) | 
						
							| 45 | 7 | adantr |  |-  ( ( ph /\ z e. ~P B ) -> dom ( F i^i _I ) e. ( Moore ` B ) ) | 
						
							| 46 |  | sseq1 |  |-  ( x = z -> ( x C_ B <-> z C_ B ) ) | 
						
							| 47 | 46 | anbi2d |  |-  ( x = z -> ( ( ph /\ x C_ B ) <-> ( ph /\ z C_ B ) ) ) | 
						
							| 48 |  | id |  |-  ( x = z -> x = z ) | 
						
							| 49 |  | fveq2 |  |-  ( x = z -> ( F ` x ) = ( F ` z ) ) | 
						
							| 50 | 48 49 | sseq12d |  |-  ( x = z -> ( x C_ ( F ` x ) <-> z C_ ( F ` z ) ) ) | 
						
							| 51 | 47 50 | imbi12d |  |-  ( x = z -> ( ( ( ph /\ x C_ B ) -> x C_ ( F ` x ) ) <-> ( ( ph /\ z C_ B ) -> z C_ ( F ` z ) ) ) ) | 
						
							| 52 | 51 3 | chvarvv |  |-  ( ( ph /\ z C_ B ) -> z C_ ( F ` z ) ) | 
						
							| 53 | 14 52 | sylan2 |  |-  ( ( ph /\ z e. ~P B ) -> z C_ ( F ` z ) ) | 
						
							| 54 |  | 2fveq3 |  |-  ( x = z -> ( F ` ( F ` x ) ) = ( F ` ( F ` z ) ) ) | 
						
							| 55 | 54 49 | eqeq12d |  |-  ( x = z -> ( ( F ` ( F ` x ) ) = ( F ` x ) <-> ( F ` ( F ` z ) ) = ( F ` z ) ) ) | 
						
							| 56 | 47 55 | imbi12d |  |-  ( x = z -> ( ( ( ph /\ x C_ B ) -> ( F ` ( F ` x ) ) = ( F ` x ) ) <-> ( ( ph /\ z C_ B ) -> ( F ` ( F ` z ) ) = ( F ` z ) ) ) ) | 
						
							| 57 | 56 5 | chvarvv |  |-  ( ( ph /\ z C_ B ) -> ( F ` ( F ` z ) ) = ( F ` z ) ) | 
						
							| 58 | 14 57 | sylan2 |  |-  ( ( ph /\ z e. ~P B ) -> ( F ` ( F ` z ) ) = ( F ` z ) ) | 
						
							| 59 | 2 | ffvelcdmda |  |-  ( ( ph /\ z e. ~P B ) -> ( F ` z ) e. ~P B ) | 
						
							| 60 |  | fnelfp |  |-  ( ( F Fn ~P B /\ ( F ` z ) e. ~P B ) -> ( ( F ` z ) e. dom ( F i^i _I ) <-> ( F ` ( F ` z ) ) = ( F ` z ) ) ) | 
						
							| 61 | 37 59 60 | syl2anc |  |-  ( ( ph /\ z e. ~P B ) -> ( ( F ` z ) e. dom ( F i^i _I ) <-> ( F ` ( F ` z ) ) = ( F ` z ) ) ) | 
						
							| 62 | 58 61 | mpbird |  |-  ( ( ph /\ z e. ~P B ) -> ( F ` z ) e. dom ( F i^i _I ) ) | 
						
							| 63 | 8 | mrcsscl |  |-  ( ( dom ( F i^i _I ) e. ( Moore ` B ) /\ z C_ ( F ` z ) /\ ( F ` z ) e. dom ( F i^i _I ) ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ ( F ` z ) ) | 
						
							| 64 | 45 53 62 63 | syl3anc |  |-  ( ( ph /\ z e. ~P B ) -> ( ( mrCls ` dom ( F i^i _I ) ) ` z ) C_ ( F ` z ) ) | 
						
							| 65 | 44 64 | eqssd |  |-  ( ( ph /\ z e. ~P B ) -> ( F ` z ) = ( ( mrCls ` dom ( F i^i _I ) ) ` z ) ) | 
						
							| 66 | 6 11 65 | eqfnfvd |  |-  ( ph -> F = ( mrCls ` dom ( F i^i _I ) ) ) |