| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istopclsd.b |
|- ( ph -> B e. V ) |
| 2 |
|
istopclsd.f |
|- ( ph -> F : ~P B --> ~P B ) |
| 3 |
|
istopclsd.e |
|- ( ( ph /\ x C_ B ) -> x C_ ( F ` x ) ) |
| 4 |
|
istopclsd.i |
|- ( ( ph /\ x C_ B ) -> ( F ` ( F ` x ) ) = ( F ` x ) ) |
| 5 |
|
istopclsd.z |
|- ( ph -> ( F ` (/) ) = (/) ) |
| 6 |
|
istopclsd.u |
|- ( ( ph /\ x C_ B /\ y C_ B ) -> ( F ` ( x u. y ) ) = ( ( F ` x ) u. ( F ` y ) ) ) |
| 7 |
|
istopclsd.j |
|- J = { z e. ~P B | ( F ` ( B \ z ) ) = ( B \ z ) } |
| 8 |
2
|
ffnd |
|- ( ph -> F Fn ~P B ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ z e. ~P B ) -> F Fn ~P B ) |
| 10 |
|
difss |
|- ( B \ z ) C_ B |
| 11 |
|
elpw2g |
|- ( B e. V -> ( ( B \ z ) e. ~P B <-> ( B \ z ) C_ B ) ) |
| 12 |
1 11
|
syl |
|- ( ph -> ( ( B \ z ) e. ~P B <-> ( B \ z ) C_ B ) ) |
| 13 |
10 12
|
mpbiri |
|- ( ph -> ( B \ z ) e. ~P B ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ z e. ~P B ) -> ( B \ z ) e. ~P B ) |
| 15 |
|
fnelfp |
|- ( ( F Fn ~P B /\ ( B \ z ) e. ~P B ) -> ( ( B \ z ) e. dom ( F i^i _I ) <-> ( F ` ( B \ z ) ) = ( B \ z ) ) ) |
| 16 |
9 14 15
|
syl2anc |
|- ( ( ph /\ z e. ~P B ) -> ( ( B \ z ) e. dom ( F i^i _I ) <-> ( F ` ( B \ z ) ) = ( B \ z ) ) ) |
| 17 |
16
|
bicomd |
|- ( ( ph /\ z e. ~P B ) -> ( ( F ` ( B \ z ) ) = ( B \ z ) <-> ( B \ z ) e. dom ( F i^i _I ) ) ) |
| 18 |
17
|
rabbidva |
|- ( ph -> { z e. ~P B | ( F ` ( B \ z ) ) = ( B \ z ) } = { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) |
| 19 |
7 18
|
eqtrid |
|- ( ph -> J = { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) |
| 20 |
|
simp1 |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ph ) |
| 21 |
|
simp2 |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> x C_ B ) |
| 22 |
|
simp3 |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> y C_ x ) |
| 23 |
22 21
|
sstrd |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> y C_ B ) |
| 24 |
20 21 23 6
|
syl3anc |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` ( x u. y ) ) = ( ( F ` x ) u. ( F ` y ) ) ) |
| 25 |
|
ssequn2 |
|- ( y C_ x <-> ( x u. y ) = x ) |
| 26 |
25
|
biimpi |
|- ( y C_ x -> ( x u. y ) = x ) |
| 27 |
26
|
3ad2ant3 |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( x u. y ) = x ) |
| 28 |
27
|
fveq2d |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` ( x u. y ) ) = ( F ` x ) ) |
| 29 |
24 28
|
eqtr3d |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( ( F ` x ) u. ( F ` y ) ) = ( F ` x ) ) |
| 30 |
|
ssequn2 |
|- ( ( F ` y ) C_ ( F ` x ) <-> ( ( F ` x ) u. ( F ` y ) ) = ( F ` x ) ) |
| 31 |
29 30
|
sylibr |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) |
| 32 |
1 2 3 31 4
|
ismrcd1 |
|- ( ph -> dom ( F i^i _I ) e. ( Moore ` B ) ) |
| 33 |
|
0elpw |
|- (/) e. ~P B |
| 34 |
|
fnelfp |
|- ( ( F Fn ~P B /\ (/) e. ~P B ) -> ( (/) e. dom ( F i^i _I ) <-> ( F ` (/) ) = (/) ) ) |
| 35 |
8 33 34
|
sylancl |
|- ( ph -> ( (/) e. dom ( F i^i _I ) <-> ( F ` (/) ) = (/) ) ) |
| 36 |
5 35
|
mpbird |
|- ( ph -> (/) e. dom ( F i^i _I ) ) |
| 37 |
|
simp1 |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ph ) |
| 38 |
|
inss1 |
|- ( F i^i _I ) C_ F |
| 39 |
|
dmss |
|- ( ( F i^i _I ) C_ F -> dom ( F i^i _I ) C_ dom F ) |
| 40 |
38 39
|
ax-mp |
|- dom ( F i^i _I ) C_ dom F |
| 41 |
40 2
|
fssdm |
|- ( ph -> dom ( F i^i _I ) C_ ~P B ) |
| 42 |
41
|
3ad2ant1 |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> dom ( F i^i _I ) C_ ~P B ) |
| 43 |
|
simp2 |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> x e. dom ( F i^i _I ) ) |
| 44 |
42 43
|
sseldd |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> x e. ~P B ) |
| 45 |
44
|
elpwid |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> x C_ B ) |
| 46 |
|
simp3 |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> y e. dom ( F i^i _I ) ) |
| 47 |
42 46
|
sseldd |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> y e. ~P B ) |
| 48 |
47
|
elpwid |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> y C_ B ) |
| 49 |
37 45 48 6
|
syl3anc |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( F ` ( x u. y ) ) = ( ( F ` x ) u. ( F ` y ) ) ) |
| 50 |
8
|
3ad2ant1 |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> F Fn ~P B ) |
| 51 |
|
fnelfp |
|- ( ( F Fn ~P B /\ x e. ~P B ) -> ( x e. dom ( F i^i _I ) <-> ( F ` x ) = x ) ) |
| 52 |
50 44 51
|
syl2anc |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( x e. dom ( F i^i _I ) <-> ( F ` x ) = x ) ) |
| 53 |
43 52
|
mpbid |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( F ` x ) = x ) |
| 54 |
|
fnelfp |
|- ( ( F Fn ~P B /\ y e. ~P B ) -> ( y e. dom ( F i^i _I ) <-> ( F ` y ) = y ) ) |
| 55 |
50 47 54
|
syl2anc |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( y e. dom ( F i^i _I ) <-> ( F ` y ) = y ) ) |
| 56 |
46 55
|
mpbid |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( F ` y ) = y ) |
| 57 |
53 56
|
uneq12d |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( ( F ` x ) u. ( F ` y ) ) = ( x u. y ) ) |
| 58 |
49 57
|
eqtrd |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( F ` ( x u. y ) ) = ( x u. y ) ) |
| 59 |
45 48
|
unssd |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( x u. y ) C_ B ) |
| 60 |
|
vex |
|- x e. _V |
| 61 |
|
vex |
|- y e. _V |
| 62 |
60 61
|
unex |
|- ( x u. y ) e. _V |
| 63 |
62
|
elpw |
|- ( ( x u. y ) e. ~P B <-> ( x u. y ) C_ B ) |
| 64 |
59 63
|
sylibr |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( x u. y ) e. ~P B ) |
| 65 |
|
fnelfp |
|- ( ( F Fn ~P B /\ ( x u. y ) e. ~P B ) -> ( ( x u. y ) e. dom ( F i^i _I ) <-> ( F ` ( x u. y ) ) = ( x u. y ) ) ) |
| 66 |
50 64 65
|
syl2anc |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( ( x u. y ) e. dom ( F i^i _I ) <-> ( F ` ( x u. y ) ) = ( x u. y ) ) ) |
| 67 |
58 66
|
mpbird |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( x u. y ) e. dom ( F i^i _I ) ) |
| 68 |
|
eqid |
|- { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } = { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } |
| 69 |
32 36 67 68
|
mretopd |
|- ( ph -> ( { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } e. ( TopOn ` B ) /\ dom ( F i^i _I ) = ( Clsd ` { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) ) ) |
| 70 |
69
|
simpld |
|- ( ph -> { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } e. ( TopOn ` B ) ) |
| 71 |
19 70
|
eqeltrd |
|- ( ph -> J e. ( TopOn ` B ) ) |
| 72 |
|
topontop |
|- ( J e. ( TopOn ` B ) -> J e. Top ) |
| 73 |
71 72
|
syl |
|- ( ph -> J e. Top ) |
| 74 |
|
eqid |
|- ( mrCls ` ( Clsd ` J ) ) = ( mrCls ` ( Clsd ` J ) ) |
| 75 |
74
|
mrccls |
|- ( J e. Top -> ( cls ` J ) = ( mrCls ` ( Clsd ` J ) ) ) |
| 76 |
73 75
|
syl |
|- ( ph -> ( cls ` J ) = ( mrCls ` ( Clsd ` J ) ) ) |
| 77 |
69
|
simprd |
|- ( ph -> dom ( F i^i _I ) = ( Clsd ` { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) ) |
| 78 |
19
|
fveq2d |
|- ( ph -> ( Clsd ` J ) = ( Clsd ` { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) ) |
| 79 |
77 78
|
eqtr4d |
|- ( ph -> dom ( F i^i _I ) = ( Clsd ` J ) ) |
| 80 |
79
|
fveq2d |
|- ( ph -> ( mrCls ` dom ( F i^i _I ) ) = ( mrCls ` ( Clsd ` J ) ) ) |
| 81 |
76 80
|
eqtr4d |
|- ( ph -> ( cls ` J ) = ( mrCls ` dom ( F i^i _I ) ) ) |
| 82 |
1 2 3 31 4
|
ismrcd2 |
|- ( ph -> F = ( mrCls ` dom ( F i^i _I ) ) ) |
| 83 |
81 82
|
eqtr4d |
|- ( ph -> ( cls ` J ) = F ) |
| 84 |
71 83
|
jca |
|- ( ph -> ( J e. ( TopOn ` B ) /\ ( cls ` J ) = F ) ) |