| Step | Hyp | Ref | Expression | 
						
							| 1 |  | istopclsd.b |  |-  ( ph -> B e. V ) | 
						
							| 2 |  | istopclsd.f |  |-  ( ph -> F : ~P B --> ~P B ) | 
						
							| 3 |  | istopclsd.e |  |-  ( ( ph /\ x C_ B ) -> x C_ ( F ` x ) ) | 
						
							| 4 |  | istopclsd.i |  |-  ( ( ph /\ x C_ B ) -> ( F ` ( F ` x ) ) = ( F ` x ) ) | 
						
							| 5 |  | istopclsd.z |  |-  ( ph -> ( F ` (/) ) = (/) ) | 
						
							| 6 |  | istopclsd.u |  |-  ( ( ph /\ x C_ B /\ y C_ B ) -> ( F ` ( x u. y ) ) = ( ( F ` x ) u. ( F ` y ) ) ) | 
						
							| 7 |  | istopclsd.j |  |-  J = { z e. ~P B | ( F ` ( B \ z ) ) = ( B \ z ) } | 
						
							| 8 | 2 | ffnd |  |-  ( ph -> F Fn ~P B ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ z e. ~P B ) -> F Fn ~P B ) | 
						
							| 10 |  | difss |  |-  ( B \ z ) C_ B | 
						
							| 11 |  | elpw2g |  |-  ( B e. V -> ( ( B \ z ) e. ~P B <-> ( B \ z ) C_ B ) ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> ( ( B \ z ) e. ~P B <-> ( B \ z ) C_ B ) ) | 
						
							| 13 | 10 12 | mpbiri |  |-  ( ph -> ( B \ z ) e. ~P B ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ z e. ~P B ) -> ( B \ z ) e. ~P B ) | 
						
							| 15 |  | fnelfp |  |-  ( ( F Fn ~P B /\ ( B \ z ) e. ~P B ) -> ( ( B \ z ) e. dom ( F i^i _I ) <-> ( F ` ( B \ z ) ) = ( B \ z ) ) ) | 
						
							| 16 | 9 14 15 | syl2anc |  |-  ( ( ph /\ z e. ~P B ) -> ( ( B \ z ) e. dom ( F i^i _I ) <-> ( F ` ( B \ z ) ) = ( B \ z ) ) ) | 
						
							| 17 | 16 | bicomd |  |-  ( ( ph /\ z e. ~P B ) -> ( ( F ` ( B \ z ) ) = ( B \ z ) <-> ( B \ z ) e. dom ( F i^i _I ) ) ) | 
						
							| 18 | 17 | rabbidva |  |-  ( ph -> { z e. ~P B | ( F ` ( B \ z ) ) = ( B \ z ) } = { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) | 
						
							| 19 | 7 18 | eqtrid |  |-  ( ph -> J = { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) | 
						
							| 20 |  | simp1 |  |-  ( ( ph /\ x C_ B /\ y C_ x ) -> ph ) | 
						
							| 21 |  | simp2 |  |-  ( ( ph /\ x C_ B /\ y C_ x ) -> x C_ B ) | 
						
							| 22 |  | simp3 |  |-  ( ( ph /\ x C_ B /\ y C_ x ) -> y C_ x ) | 
						
							| 23 | 22 21 | sstrd |  |-  ( ( ph /\ x C_ B /\ y C_ x ) -> y C_ B ) | 
						
							| 24 | 20 21 23 6 | syl3anc |  |-  ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` ( x u. y ) ) = ( ( F ` x ) u. ( F ` y ) ) ) | 
						
							| 25 |  | ssequn2 |  |-  ( y C_ x <-> ( x u. y ) = x ) | 
						
							| 26 | 25 | biimpi |  |-  ( y C_ x -> ( x u. y ) = x ) | 
						
							| 27 | 26 | 3ad2ant3 |  |-  ( ( ph /\ x C_ B /\ y C_ x ) -> ( x u. y ) = x ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` ( x u. y ) ) = ( F ` x ) ) | 
						
							| 29 | 24 28 | eqtr3d |  |-  ( ( ph /\ x C_ B /\ y C_ x ) -> ( ( F ` x ) u. ( F ` y ) ) = ( F ` x ) ) | 
						
							| 30 |  | ssequn2 |  |-  ( ( F ` y ) C_ ( F ` x ) <-> ( ( F ` x ) u. ( F ` y ) ) = ( F ` x ) ) | 
						
							| 31 | 29 30 | sylibr |  |-  ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) | 
						
							| 32 | 1 2 3 31 4 | ismrcd1 |  |-  ( ph -> dom ( F i^i _I ) e. ( Moore ` B ) ) | 
						
							| 33 |  | 0elpw |  |-  (/) e. ~P B | 
						
							| 34 |  | fnelfp |  |-  ( ( F Fn ~P B /\ (/) e. ~P B ) -> ( (/) e. dom ( F i^i _I ) <-> ( F ` (/) ) = (/) ) ) | 
						
							| 35 | 8 33 34 | sylancl |  |-  ( ph -> ( (/) e. dom ( F i^i _I ) <-> ( F ` (/) ) = (/) ) ) | 
						
							| 36 | 5 35 | mpbird |  |-  ( ph -> (/) e. dom ( F i^i _I ) ) | 
						
							| 37 |  | simp1 |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ph ) | 
						
							| 38 |  | inss1 |  |-  ( F i^i _I ) C_ F | 
						
							| 39 |  | dmss |  |-  ( ( F i^i _I ) C_ F -> dom ( F i^i _I ) C_ dom F ) | 
						
							| 40 | 38 39 | ax-mp |  |-  dom ( F i^i _I ) C_ dom F | 
						
							| 41 | 40 2 | fssdm |  |-  ( ph -> dom ( F i^i _I ) C_ ~P B ) | 
						
							| 42 | 41 | 3ad2ant1 |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> dom ( F i^i _I ) C_ ~P B ) | 
						
							| 43 |  | simp2 |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> x e. dom ( F i^i _I ) ) | 
						
							| 44 | 42 43 | sseldd |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> x e. ~P B ) | 
						
							| 45 | 44 | elpwid |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> x C_ B ) | 
						
							| 46 |  | simp3 |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> y e. dom ( F i^i _I ) ) | 
						
							| 47 | 42 46 | sseldd |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> y e. ~P B ) | 
						
							| 48 | 47 | elpwid |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> y C_ B ) | 
						
							| 49 | 37 45 48 6 | syl3anc |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( F ` ( x u. y ) ) = ( ( F ` x ) u. ( F ` y ) ) ) | 
						
							| 50 | 8 | 3ad2ant1 |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> F Fn ~P B ) | 
						
							| 51 |  | fnelfp |  |-  ( ( F Fn ~P B /\ x e. ~P B ) -> ( x e. dom ( F i^i _I ) <-> ( F ` x ) = x ) ) | 
						
							| 52 | 50 44 51 | syl2anc |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( x e. dom ( F i^i _I ) <-> ( F ` x ) = x ) ) | 
						
							| 53 | 43 52 | mpbid |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( F ` x ) = x ) | 
						
							| 54 |  | fnelfp |  |-  ( ( F Fn ~P B /\ y e. ~P B ) -> ( y e. dom ( F i^i _I ) <-> ( F ` y ) = y ) ) | 
						
							| 55 | 50 47 54 | syl2anc |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( y e. dom ( F i^i _I ) <-> ( F ` y ) = y ) ) | 
						
							| 56 | 46 55 | mpbid |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( F ` y ) = y ) | 
						
							| 57 | 53 56 | uneq12d |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( ( F ` x ) u. ( F ` y ) ) = ( x u. y ) ) | 
						
							| 58 | 49 57 | eqtrd |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( F ` ( x u. y ) ) = ( x u. y ) ) | 
						
							| 59 | 45 48 | unssd |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( x u. y ) C_ B ) | 
						
							| 60 |  | vex |  |-  x e. _V | 
						
							| 61 |  | vex |  |-  y e. _V | 
						
							| 62 | 60 61 | unex |  |-  ( x u. y ) e. _V | 
						
							| 63 | 62 | elpw |  |-  ( ( x u. y ) e. ~P B <-> ( x u. y ) C_ B ) | 
						
							| 64 | 59 63 | sylibr |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( x u. y ) e. ~P B ) | 
						
							| 65 |  | fnelfp |  |-  ( ( F Fn ~P B /\ ( x u. y ) e. ~P B ) -> ( ( x u. y ) e. dom ( F i^i _I ) <-> ( F ` ( x u. y ) ) = ( x u. y ) ) ) | 
						
							| 66 | 50 64 65 | syl2anc |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( ( x u. y ) e. dom ( F i^i _I ) <-> ( F ` ( x u. y ) ) = ( x u. y ) ) ) | 
						
							| 67 | 58 66 | mpbird |  |-  ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( x u. y ) e. dom ( F i^i _I ) ) | 
						
							| 68 |  | eqid |  |-  { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } = { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } | 
						
							| 69 | 32 36 67 68 | mretopd |  |-  ( ph -> ( { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } e. ( TopOn ` B ) /\ dom ( F i^i _I ) = ( Clsd ` { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) ) ) | 
						
							| 70 | 69 | simpld |  |-  ( ph -> { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } e. ( TopOn ` B ) ) | 
						
							| 71 | 19 70 | eqeltrd |  |-  ( ph -> J e. ( TopOn ` B ) ) | 
						
							| 72 |  | topontop |  |-  ( J e. ( TopOn ` B ) -> J e. Top ) | 
						
							| 73 | 71 72 | syl |  |-  ( ph -> J e. Top ) | 
						
							| 74 |  | eqid |  |-  ( mrCls ` ( Clsd ` J ) ) = ( mrCls ` ( Clsd ` J ) ) | 
						
							| 75 | 74 | mrccls |  |-  ( J e. Top -> ( cls ` J ) = ( mrCls ` ( Clsd ` J ) ) ) | 
						
							| 76 | 73 75 | syl |  |-  ( ph -> ( cls ` J ) = ( mrCls ` ( Clsd ` J ) ) ) | 
						
							| 77 | 69 | simprd |  |-  ( ph -> dom ( F i^i _I ) = ( Clsd ` { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) ) | 
						
							| 78 | 19 | fveq2d |  |-  ( ph -> ( Clsd ` J ) = ( Clsd ` { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) ) | 
						
							| 79 | 77 78 | eqtr4d |  |-  ( ph -> dom ( F i^i _I ) = ( Clsd ` J ) ) | 
						
							| 80 | 79 | fveq2d |  |-  ( ph -> ( mrCls ` dom ( F i^i _I ) ) = ( mrCls ` ( Clsd ` J ) ) ) | 
						
							| 81 | 76 80 | eqtr4d |  |-  ( ph -> ( cls ` J ) = ( mrCls ` dom ( F i^i _I ) ) ) | 
						
							| 82 | 1 2 3 31 4 | ismrcd2 |  |-  ( ph -> F = ( mrCls ` dom ( F i^i _I ) ) ) | 
						
							| 83 | 81 82 | eqtr4d |  |-  ( ph -> ( cls ` J ) = F ) | 
						
							| 84 | 71 83 | jca |  |-  ( ph -> ( J e. ( TopOn ` B ) /\ ( cls ` J ) = F ) ) |