Step |
Hyp |
Ref |
Expression |
1 |
|
istopclsd.b |
|- ( ph -> B e. V ) |
2 |
|
istopclsd.f |
|- ( ph -> F : ~P B --> ~P B ) |
3 |
|
istopclsd.e |
|- ( ( ph /\ x C_ B ) -> x C_ ( F ` x ) ) |
4 |
|
istopclsd.i |
|- ( ( ph /\ x C_ B ) -> ( F ` ( F ` x ) ) = ( F ` x ) ) |
5 |
|
istopclsd.z |
|- ( ph -> ( F ` (/) ) = (/) ) |
6 |
|
istopclsd.u |
|- ( ( ph /\ x C_ B /\ y C_ B ) -> ( F ` ( x u. y ) ) = ( ( F ` x ) u. ( F ` y ) ) ) |
7 |
|
istopclsd.j |
|- J = { z e. ~P B | ( F ` ( B \ z ) ) = ( B \ z ) } |
8 |
2
|
ffnd |
|- ( ph -> F Fn ~P B ) |
9 |
8
|
adantr |
|- ( ( ph /\ z e. ~P B ) -> F Fn ~P B ) |
10 |
|
difss |
|- ( B \ z ) C_ B |
11 |
|
elpw2g |
|- ( B e. V -> ( ( B \ z ) e. ~P B <-> ( B \ z ) C_ B ) ) |
12 |
1 11
|
syl |
|- ( ph -> ( ( B \ z ) e. ~P B <-> ( B \ z ) C_ B ) ) |
13 |
10 12
|
mpbiri |
|- ( ph -> ( B \ z ) e. ~P B ) |
14 |
13
|
adantr |
|- ( ( ph /\ z e. ~P B ) -> ( B \ z ) e. ~P B ) |
15 |
|
fnelfp |
|- ( ( F Fn ~P B /\ ( B \ z ) e. ~P B ) -> ( ( B \ z ) e. dom ( F i^i _I ) <-> ( F ` ( B \ z ) ) = ( B \ z ) ) ) |
16 |
9 14 15
|
syl2anc |
|- ( ( ph /\ z e. ~P B ) -> ( ( B \ z ) e. dom ( F i^i _I ) <-> ( F ` ( B \ z ) ) = ( B \ z ) ) ) |
17 |
16
|
bicomd |
|- ( ( ph /\ z e. ~P B ) -> ( ( F ` ( B \ z ) ) = ( B \ z ) <-> ( B \ z ) e. dom ( F i^i _I ) ) ) |
18 |
17
|
rabbidva |
|- ( ph -> { z e. ~P B | ( F ` ( B \ z ) ) = ( B \ z ) } = { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) |
19 |
7 18
|
syl5eq |
|- ( ph -> J = { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) |
20 |
|
simp1 |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ph ) |
21 |
|
simp2 |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> x C_ B ) |
22 |
|
simp3 |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> y C_ x ) |
23 |
22 21
|
sstrd |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> y C_ B ) |
24 |
20 21 23 6
|
syl3anc |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` ( x u. y ) ) = ( ( F ` x ) u. ( F ` y ) ) ) |
25 |
|
ssequn2 |
|- ( y C_ x <-> ( x u. y ) = x ) |
26 |
25
|
biimpi |
|- ( y C_ x -> ( x u. y ) = x ) |
27 |
26
|
3ad2ant3 |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( x u. y ) = x ) |
28 |
27
|
fveq2d |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` ( x u. y ) ) = ( F ` x ) ) |
29 |
24 28
|
eqtr3d |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( ( F ` x ) u. ( F ` y ) ) = ( F ` x ) ) |
30 |
|
ssequn2 |
|- ( ( F ` y ) C_ ( F ` x ) <-> ( ( F ` x ) u. ( F ` y ) ) = ( F ` x ) ) |
31 |
29 30
|
sylibr |
|- ( ( ph /\ x C_ B /\ y C_ x ) -> ( F ` y ) C_ ( F ` x ) ) |
32 |
1 2 3 31 4
|
ismrcd1 |
|- ( ph -> dom ( F i^i _I ) e. ( Moore ` B ) ) |
33 |
|
0elpw |
|- (/) e. ~P B |
34 |
|
fnelfp |
|- ( ( F Fn ~P B /\ (/) e. ~P B ) -> ( (/) e. dom ( F i^i _I ) <-> ( F ` (/) ) = (/) ) ) |
35 |
8 33 34
|
sylancl |
|- ( ph -> ( (/) e. dom ( F i^i _I ) <-> ( F ` (/) ) = (/) ) ) |
36 |
5 35
|
mpbird |
|- ( ph -> (/) e. dom ( F i^i _I ) ) |
37 |
|
simp1 |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ph ) |
38 |
|
inss1 |
|- ( F i^i _I ) C_ F |
39 |
|
dmss |
|- ( ( F i^i _I ) C_ F -> dom ( F i^i _I ) C_ dom F ) |
40 |
38 39
|
ax-mp |
|- dom ( F i^i _I ) C_ dom F |
41 |
40 2
|
fssdm |
|- ( ph -> dom ( F i^i _I ) C_ ~P B ) |
42 |
41
|
3ad2ant1 |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> dom ( F i^i _I ) C_ ~P B ) |
43 |
|
simp2 |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> x e. dom ( F i^i _I ) ) |
44 |
42 43
|
sseldd |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> x e. ~P B ) |
45 |
44
|
elpwid |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> x C_ B ) |
46 |
|
simp3 |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> y e. dom ( F i^i _I ) ) |
47 |
42 46
|
sseldd |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> y e. ~P B ) |
48 |
47
|
elpwid |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> y C_ B ) |
49 |
37 45 48 6
|
syl3anc |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( F ` ( x u. y ) ) = ( ( F ` x ) u. ( F ` y ) ) ) |
50 |
8
|
3ad2ant1 |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> F Fn ~P B ) |
51 |
|
fnelfp |
|- ( ( F Fn ~P B /\ x e. ~P B ) -> ( x e. dom ( F i^i _I ) <-> ( F ` x ) = x ) ) |
52 |
50 44 51
|
syl2anc |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( x e. dom ( F i^i _I ) <-> ( F ` x ) = x ) ) |
53 |
43 52
|
mpbid |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( F ` x ) = x ) |
54 |
|
fnelfp |
|- ( ( F Fn ~P B /\ y e. ~P B ) -> ( y e. dom ( F i^i _I ) <-> ( F ` y ) = y ) ) |
55 |
50 47 54
|
syl2anc |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( y e. dom ( F i^i _I ) <-> ( F ` y ) = y ) ) |
56 |
46 55
|
mpbid |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( F ` y ) = y ) |
57 |
53 56
|
uneq12d |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( ( F ` x ) u. ( F ` y ) ) = ( x u. y ) ) |
58 |
49 57
|
eqtrd |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( F ` ( x u. y ) ) = ( x u. y ) ) |
59 |
45 48
|
unssd |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( x u. y ) C_ B ) |
60 |
|
vex |
|- x e. _V |
61 |
|
vex |
|- y e. _V |
62 |
60 61
|
unex |
|- ( x u. y ) e. _V |
63 |
62
|
elpw |
|- ( ( x u. y ) e. ~P B <-> ( x u. y ) C_ B ) |
64 |
59 63
|
sylibr |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( x u. y ) e. ~P B ) |
65 |
|
fnelfp |
|- ( ( F Fn ~P B /\ ( x u. y ) e. ~P B ) -> ( ( x u. y ) e. dom ( F i^i _I ) <-> ( F ` ( x u. y ) ) = ( x u. y ) ) ) |
66 |
50 64 65
|
syl2anc |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( ( x u. y ) e. dom ( F i^i _I ) <-> ( F ` ( x u. y ) ) = ( x u. y ) ) ) |
67 |
58 66
|
mpbird |
|- ( ( ph /\ x e. dom ( F i^i _I ) /\ y e. dom ( F i^i _I ) ) -> ( x u. y ) e. dom ( F i^i _I ) ) |
68 |
|
eqid |
|- { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } = { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } |
69 |
32 36 67 68
|
mretopd |
|- ( ph -> ( { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } e. ( TopOn ` B ) /\ dom ( F i^i _I ) = ( Clsd ` { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) ) ) |
70 |
69
|
simpld |
|- ( ph -> { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } e. ( TopOn ` B ) ) |
71 |
19 70
|
eqeltrd |
|- ( ph -> J e. ( TopOn ` B ) ) |
72 |
|
topontop |
|- ( J e. ( TopOn ` B ) -> J e. Top ) |
73 |
71 72
|
syl |
|- ( ph -> J e. Top ) |
74 |
|
eqid |
|- ( mrCls ` ( Clsd ` J ) ) = ( mrCls ` ( Clsd ` J ) ) |
75 |
74
|
mrccls |
|- ( J e. Top -> ( cls ` J ) = ( mrCls ` ( Clsd ` J ) ) ) |
76 |
73 75
|
syl |
|- ( ph -> ( cls ` J ) = ( mrCls ` ( Clsd ` J ) ) ) |
77 |
69
|
simprd |
|- ( ph -> dom ( F i^i _I ) = ( Clsd ` { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) ) |
78 |
19
|
fveq2d |
|- ( ph -> ( Clsd ` J ) = ( Clsd ` { z e. ~P B | ( B \ z ) e. dom ( F i^i _I ) } ) ) |
79 |
77 78
|
eqtr4d |
|- ( ph -> dom ( F i^i _I ) = ( Clsd ` J ) ) |
80 |
79
|
fveq2d |
|- ( ph -> ( mrCls ` dom ( F i^i _I ) ) = ( mrCls ` ( Clsd ` J ) ) ) |
81 |
76 80
|
eqtr4d |
|- ( ph -> ( cls ` J ) = ( mrCls ` dom ( F i^i _I ) ) ) |
82 |
1 2 3 31 4
|
ismrcd2 |
|- ( ph -> F = ( mrCls ` dom ( F i^i _I ) ) ) |
83 |
81 82
|
eqtr4d |
|- ( ph -> ( cls ` J ) = F ) |
84 |
71 83
|
jca |
|- ( ph -> ( J e. ( TopOn ` B ) /\ ( cls ` J ) = F ) ) |