| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istopclsd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 2 |
|
istopclsd.f |
⊢ ( 𝜑 → 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 3 |
|
istopclsd.e |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 ⊆ ( 𝐹 ‘ 𝑥 ) ) |
| 4 |
|
istopclsd.i |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 5 |
|
istopclsd.z |
⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) |
| 6 |
|
istopclsd.u |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 7 |
|
istopclsd.j |
⊢ 𝐽 = { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐹 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝐵 ∖ 𝑧 ) } |
| 8 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝒫 𝐵 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → 𝐹 Fn 𝒫 𝐵 ) |
| 10 |
|
difss |
⊢ ( 𝐵 ∖ 𝑧 ) ⊆ 𝐵 |
| 11 |
|
elpw2g |
⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐵 ∖ 𝑧 ) ∈ 𝒫 𝐵 ↔ ( 𝐵 ∖ 𝑧 ) ⊆ 𝐵 ) ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ∖ 𝑧 ) ∈ 𝒫 𝐵 ↔ ( 𝐵 ∖ 𝑧 ) ⊆ 𝐵 ) ) |
| 13 |
10 12
|
mpbiri |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑧 ) ∈ 𝒫 𝐵 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑧 ) ∈ 𝒫 𝐵 ) |
| 15 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝒫 𝐵 ∧ ( 𝐵 ∖ 𝑧 ) ∈ 𝒫 𝐵 ) → ( ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝐵 ∖ 𝑧 ) ) ) |
| 16 |
9 14 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝐵 ∖ 𝑧 ) ) ) |
| 17 |
16
|
bicomd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( ( 𝐹 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝐵 ∖ 𝑧 ) ↔ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ) ) |
| 18 |
17
|
rabbidva |
⊢ ( 𝜑 → { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐹 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝐵 ∖ 𝑧 ) } = { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ) |
| 19 |
7 18
|
eqtrid |
⊢ ( 𝜑 → 𝐽 = { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ) |
| 20 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → 𝜑 ) |
| 21 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → 𝑥 ⊆ 𝐵 ) |
| 22 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ⊆ 𝑥 ) |
| 23 |
22 21
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ⊆ 𝐵 ) |
| 24 |
20 21 23 6
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 |
|
ssequn2 |
⊢ ( 𝑦 ⊆ 𝑥 ↔ ( 𝑥 ∪ 𝑦 ) = 𝑥 ) |
| 26 |
25
|
biimpi |
⊢ ( 𝑦 ⊆ 𝑥 → ( 𝑥 ∪ 𝑦 ) = 𝑥 ) |
| 27 |
26
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝑥 ∪ 𝑦 ) = 𝑥 ) |
| 28 |
27
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 29 |
24 28
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 30 |
|
ssequn2 |
⊢ ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 31 |
29 30
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
| 32 |
1 2 3 31 4
|
ismrcd1 |
⊢ ( 𝜑 → dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) ) |
| 33 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐵 |
| 34 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵 ) → ( ∅ ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ∅ ) = ∅ ) ) |
| 35 |
8 33 34
|
sylancl |
⊢ ( 𝜑 → ( ∅ ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ∅ ) = ∅ ) ) |
| 36 |
5 35
|
mpbird |
⊢ ( 𝜑 → ∅ ∈ dom ( 𝐹 ∩ I ) ) |
| 37 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝜑 ) |
| 38 |
|
inss1 |
⊢ ( 𝐹 ∩ I ) ⊆ 𝐹 |
| 39 |
|
dmss |
⊢ ( ( 𝐹 ∩ I ) ⊆ 𝐹 → dom ( 𝐹 ∩ I ) ⊆ dom 𝐹 ) |
| 40 |
38 39
|
ax-mp |
⊢ dom ( 𝐹 ∩ I ) ⊆ dom 𝐹 |
| 41 |
40 2
|
fssdm |
⊢ ( 𝜑 → dom ( 𝐹 ∩ I ) ⊆ 𝒫 𝐵 ) |
| 42 |
41
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → dom ( 𝐹 ∩ I ) ⊆ 𝒫 𝐵 ) |
| 43 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝑥 ∈ dom ( 𝐹 ∩ I ) ) |
| 44 |
42 43
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝑥 ∈ 𝒫 𝐵 ) |
| 45 |
44
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝑥 ⊆ 𝐵 ) |
| 46 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝑦 ∈ dom ( 𝐹 ∩ I ) ) |
| 47 |
42 46
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝑦 ∈ 𝒫 𝐵 ) |
| 48 |
47
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝑦 ⊆ 𝐵 ) |
| 49 |
37 45 48 6
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 50 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝐹 Fn 𝒫 𝐵 ) |
| 51 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝒫 𝐵 ∧ 𝑥 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
| 52 |
50 44 51
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝑥 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
| 53 |
43 52
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
| 54 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝒫 𝐵 ∧ 𝑦 ∈ 𝒫 𝐵 ) → ( 𝑦 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) |
| 55 |
50 47 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝑦 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) |
| 56 |
46 55
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) |
| 57 |
53 56
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ∪ 𝑦 ) ) |
| 58 |
49 57
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( 𝑥 ∪ 𝑦 ) ) |
| 59 |
45 48
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝑥 ∪ 𝑦 ) ⊆ 𝐵 ) |
| 60 |
|
vex |
⊢ 𝑥 ∈ V |
| 61 |
|
vex |
⊢ 𝑦 ∈ V |
| 62 |
60 61
|
unex |
⊢ ( 𝑥 ∪ 𝑦 ) ∈ V |
| 63 |
62
|
elpw |
⊢ ( ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐵 ↔ ( 𝑥 ∪ 𝑦 ) ⊆ 𝐵 ) |
| 64 |
59 63
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐵 ) |
| 65 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝒫 𝐵 ∧ ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐵 ) → ( ( 𝑥 ∪ 𝑦 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( 𝑥 ∪ 𝑦 ) ) ) |
| 66 |
50 64 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( ( 𝑥 ∪ 𝑦 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( 𝑥 ∪ 𝑦 ) ) ) |
| 67 |
58 66
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝑥 ∪ 𝑦 ) ∈ dom ( 𝐹 ∩ I ) ) |
| 68 |
|
eqid |
⊢ { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } = { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } |
| 69 |
32 36 67 68
|
mretopd |
⊢ ( 𝜑 → ( { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ∈ ( TopOn ‘ 𝐵 ) ∧ dom ( 𝐹 ∩ I ) = ( Clsd ‘ { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ) ) ) |
| 70 |
69
|
simpld |
⊢ ( 𝜑 → { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ∈ ( TopOn ‘ 𝐵 ) ) |
| 71 |
19 70
|
eqeltrd |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 72 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top ) |
| 73 |
71 72
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 74 |
|
eqid |
⊢ ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) = ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) |
| 75 |
74
|
mrccls |
⊢ ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) = ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) ) |
| 76 |
73 75
|
syl |
⊢ ( 𝜑 → ( cls ‘ 𝐽 ) = ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) ) |
| 77 |
69
|
simprd |
⊢ ( 𝜑 → dom ( 𝐹 ∩ I ) = ( Clsd ‘ { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ) ) |
| 78 |
19
|
fveq2d |
⊢ ( 𝜑 → ( Clsd ‘ 𝐽 ) = ( Clsd ‘ { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ) ) |
| 79 |
77 78
|
eqtr4d |
⊢ ( 𝜑 → dom ( 𝐹 ∩ I ) = ( Clsd ‘ 𝐽 ) ) |
| 80 |
79
|
fveq2d |
⊢ ( 𝜑 → ( mrCls ‘ dom ( 𝐹 ∩ I ) ) = ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) ) |
| 81 |
76 80
|
eqtr4d |
⊢ ( 𝜑 → ( cls ‘ 𝐽 ) = ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ) |
| 82 |
1 2 3 31 4
|
ismrcd2 |
⊢ ( 𝜑 → 𝐹 = ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ) |
| 83 |
81 82
|
eqtr4d |
⊢ ( 𝜑 → ( cls ‘ 𝐽 ) = 𝐹 ) |
| 84 |
71 83
|
jca |
⊢ ( 𝜑 → ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ ( cls ‘ 𝐽 ) = 𝐹 ) ) |