Step |
Hyp |
Ref |
Expression |
1 |
|
istopclsd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
2 |
|
istopclsd.f |
⊢ ( 𝜑 → 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
3 |
|
istopclsd.e |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 ⊆ ( 𝐹 ‘ 𝑥 ) ) |
4 |
|
istopclsd.i |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
5 |
|
istopclsd.z |
⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) |
6 |
|
istopclsd.u |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
7 |
|
istopclsd.j |
⊢ 𝐽 = { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐹 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝐵 ∖ 𝑧 ) } |
8 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝒫 𝐵 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → 𝐹 Fn 𝒫 𝐵 ) |
10 |
|
difss |
⊢ ( 𝐵 ∖ 𝑧 ) ⊆ 𝐵 |
11 |
|
elpw2g |
⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐵 ∖ 𝑧 ) ∈ 𝒫 𝐵 ↔ ( 𝐵 ∖ 𝑧 ) ⊆ 𝐵 ) ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ∖ 𝑧 ) ∈ 𝒫 𝐵 ↔ ( 𝐵 ∖ 𝑧 ) ⊆ 𝐵 ) ) |
13 |
10 12
|
mpbiri |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑧 ) ∈ 𝒫 𝐵 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑧 ) ∈ 𝒫 𝐵 ) |
15 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝒫 𝐵 ∧ ( 𝐵 ∖ 𝑧 ) ∈ 𝒫 𝐵 ) → ( ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝐵 ∖ 𝑧 ) ) ) |
16 |
9 14 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝐵 ∖ 𝑧 ) ) ) |
17 |
16
|
bicomd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( ( 𝐹 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝐵 ∖ 𝑧 ) ↔ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ) ) |
18 |
17
|
rabbidva |
⊢ ( 𝜑 → { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐹 ‘ ( 𝐵 ∖ 𝑧 ) ) = ( 𝐵 ∖ 𝑧 ) } = { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ) |
19 |
7 18
|
syl5eq |
⊢ ( 𝜑 → 𝐽 = { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ) |
20 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → 𝜑 ) |
21 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → 𝑥 ⊆ 𝐵 ) |
22 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ⊆ 𝑥 ) |
23 |
22 21
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ⊆ 𝐵 ) |
24 |
20 21 23 6
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
25 |
|
ssequn2 |
⊢ ( 𝑦 ⊆ 𝑥 ↔ ( 𝑥 ∪ 𝑦 ) = 𝑥 ) |
26 |
25
|
biimpi |
⊢ ( 𝑦 ⊆ 𝑥 → ( 𝑥 ∪ 𝑦 ) = 𝑥 ) |
27 |
26
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝑥 ∪ 𝑦 ) = 𝑥 ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
29 |
24 28
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
30 |
|
ssequn2 |
⊢ ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
31 |
29 30
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
32 |
1 2 3 31 4
|
ismrcd1 |
⊢ ( 𝜑 → dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) ) |
33 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐵 |
34 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵 ) → ( ∅ ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ∅ ) = ∅ ) ) |
35 |
8 33 34
|
sylancl |
⊢ ( 𝜑 → ( ∅ ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ∅ ) = ∅ ) ) |
36 |
5 35
|
mpbird |
⊢ ( 𝜑 → ∅ ∈ dom ( 𝐹 ∩ I ) ) |
37 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝜑 ) |
38 |
|
inss1 |
⊢ ( 𝐹 ∩ I ) ⊆ 𝐹 |
39 |
|
dmss |
⊢ ( ( 𝐹 ∩ I ) ⊆ 𝐹 → dom ( 𝐹 ∩ I ) ⊆ dom 𝐹 ) |
40 |
38 39
|
ax-mp |
⊢ dom ( 𝐹 ∩ I ) ⊆ dom 𝐹 |
41 |
40 2
|
fssdm |
⊢ ( 𝜑 → dom ( 𝐹 ∩ I ) ⊆ 𝒫 𝐵 ) |
42 |
41
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → dom ( 𝐹 ∩ I ) ⊆ 𝒫 𝐵 ) |
43 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝑥 ∈ dom ( 𝐹 ∩ I ) ) |
44 |
42 43
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝑥 ∈ 𝒫 𝐵 ) |
45 |
44
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝑥 ⊆ 𝐵 ) |
46 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝑦 ∈ dom ( 𝐹 ∩ I ) ) |
47 |
42 46
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝑦 ∈ 𝒫 𝐵 ) |
48 |
47
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝑦 ⊆ 𝐵 ) |
49 |
37 45 48 6
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
50 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → 𝐹 Fn 𝒫 𝐵 ) |
51 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝒫 𝐵 ∧ 𝑥 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
52 |
50 44 51
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝑥 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
53 |
43 52
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
54 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝒫 𝐵 ∧ 𝑦 ∈ 𝒫 𝐵 ) → ( 𝑦 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) |
55 |
50 47 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝑦 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) |
56 |
46 55
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) |
57 |
53 56
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ∪ 𝑦 ) ) |
58 |
49 57
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( 𝑥 ∪ 𝑦 ) ) |
59 |
45 48
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝑥 ∪ 𝑦 ) ⊆ 𝐵 ) |
60 |
|
vex |
⊢ 𝑥 ∈ V |
61 |
|
vex |
⊢ 𝑦 ∈ V |
62 |
60 61
|
unex |
⊢ ( 𝑥 ∪ 𝑦 ) ∈ V |
63 |
62
|
elpw |
⊢ ( ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐵 ↔ ( 𝑥 ∪ 𝑦 ) ⊆ 𝐵 ) |
64 |
59 63
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐵 ) |
65 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝒫 𝐵 ∧ ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐵 ) → ( ( 𝑥 ∪ 𝑦 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( 𝑥 ∪ 𝑦 ) ) ) |
66 |
50 64 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( ( 𝑥 ∪ 𝑦 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( 𝑥 ∪ 𝑦 ) ) = ( 𝑥 ∪ 𝑦 ) ) ) |
67 |
58 66
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ∧ 𝑦 ∈ dom ( 𝐹 ∩ I ) ) → ( 𝑥 ∪ 𝑦 ) ∈ dom ( 𝐹 ∩ I ) ) |
68 |
|
eqid |
⊢ { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } = { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } |
69 |
32 36 67 68
|
mretopd |
⊢ ( 𝜑 → ( { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ∈ ( TopOn ‘ 𝐵 ) ∧ dom ( 𝐹 ∩ I ) = ( Clsd ‘ { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ) ) ) |
70 |
69
|
simpld |
⊢ ( 𝜑 → { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ∈ ( TopOn ‘ 𝐵 ) ) |
71 |
19 70
|
eqeltrd |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
72 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top ) |
73 |
71 72
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
74 |
|
eqid |
⊢ ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) = ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) |
75 |
74
|
mrccls |
⊢ ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) = ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) ) |
76 |
73 75
|
syl |
⊢ ( 𝜑 → ( cls ‘ 𝐽 ) = ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) ) |
77 |
69
|
simprd |
⊢ ( 𝜑 → dom ( 𝐹 ∩ I ) = ( Clsd ‘ { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ) ) |
78 |
19
|
fveq2d |
⊢ ( 𝜑 → ( Clsd ‘ 𝐽 ) = ( Clsd ‘ { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) } ) ) |
79 |
77 78
|
eqtr4d |
⊢ ( 𝜑 → dom ( 𝐹 ∩ I ) = ( Clsd ‘ 𝐽 ) ) |
80 |
79
|
fveq2d |
⊢ ( 𝜑 → ( mrCls ‘ dom ( 𝐹 ∩ I ) ) = ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) ) |
81 |
76 80
|
eqtr4d |
⊢ ( 𝜑 → ( cls ‘ 𝐽 ) = ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ) |
82 |
1 2 3 31 4
|
ismrcd2 |
⊢ ( 𝜑 → 𝐹 = ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ) |
83 |
81 82
|
eqtr4d |
⊢ ( 𝜑 → ( cls ‘ 𝐽 ) = 𝐹 ) |
84 |
71 83
|
jca |
⊢ ( 𝜑 → ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ ( cls ‘ 𝐽 ) = 𝐹 ) ) |