| Step | Hyp | Ref | Expression | 
						
							| 1 |  | istopclsd.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | istopclsd.f | ⊢ ( 𝜑  →  𝐹 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 3 |  | istopclsd.e | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  𝑥  ⊆  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 4 |  | istopclsd.i | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 5 |  | istopclsd.z | ⊢ ( 𝜑  →  ( 𝐹 ‘ ∅ )  =  ∅ ) | 
						
							| 6 |  | istopclsd.u | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝐵 )  →  ( 𝐹 ‘ ( 𝑥  ∪  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 7 |  | istopclsd.j | ⊢ 𝐽  =  { 𝑧  ∈  𝒫  𝐵  ∣  ( 𝐹 ‘ ( 𝐵  ∖  𝑧 ) )  =  ( 𝐵  ∖  𝑧 ) } | 
						
							| 8 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝒫  𝐵 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  𝐹  Fn  𝒫  𝐵 ) | 
						
							| 10 |  | difss | ⊢ ( 𝐵  ∖  𝑧 )  ⊆  𝐵 | 
						
							| 11 |  | elpw2g | ⊢ ( 𝐵  ∈  𝑉  →  ( ( 𝐵  ∖  𝑧 )  ∈  𝒫  𝐵  ↔  ( 𝐵  ∖  𝑧 )  ⊆  𝐵 ) ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  ( ( 𝐵  ∖  𝑧 )  ∈  𝒫  𝐵  ↔  ( 𝐵  ∖  𝑧 )  ⊆  𝐵 ) ) | 
						
							| 13 | 10 12 | mpbiri | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑧 )  ∈  𝒫  𝐵 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑧 )  ∈  𝒫  𝐵 ) | 
						
							| 15 |  | fnelfp | ⊢ ( ( 𝐹  Fn  𝒫  𝐵  ∧  ( 𝐵  ∖  𝑧 )  ∈  𝒫  𝐵 )  →  ( ( 𝐵  ∖  𝑧 )  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ ( 𝐵  ∖  𝑧 ) )  =  ( 𝐵  ∖  𝑧 ) ) ) | 
						
							| 16 | 9 14 15 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( ( 𝐵  ∖  𝑧 )  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ ( 𝐵  ∖  𝑧 ) )  =  ( 𝐵  ∖  𝑧 ) ) ) | 
						
							| 17 | 16 | bicomd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( ( 𝐹 ‘ ( 𝐵  ∖  𝑧 ) )  =  ( 𝐵  ∖  𝑧 )  ↔  ( 𝐵  ∖  𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) ) ) | 
						
							| 18 | 17 | rabbidva | ⊢ ( 𝜑  →  { 𝑧  ∈  𝒫  𝐵  ∣  ( 𝐹 ‘ ( 𝐵  ∖  𝑧 ) )  =  ( 𝐵  ∖  𝑧 ) }  =  { 𝑧  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) } ) | 
						
							| 19 | 7 18 | eqtrid | ⊢ ( 𝜑  →  𝐽  =  { 𝑧  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) } ) | 
						
							| 20 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  𝜑 ) | 
						
							| 21 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  𝑥  ⊆  𝐵 ) | 
						
							| 22 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  𝑦  ⊆  𝑥 ) | 
						
							| 23 | 22 21 | sstrd | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  𝑦  ⊆  𝐵 ) | 
						
							| 24 | 20 21 23 6 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  ( 𝐹 ‘ ( 𝑥  ∪  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 25 |  | ssequn2 | ⊢ ( 𝑦  ⊆  𝑥  ↔  ( 𝑥  ∪  𝑦 )  =  𝑥 ) | 
						
							| 26 | 25 | biimpi | ⊢ ( 𝑦  ⊆  𝑥  →  ( 𝑥  ∪  𝑦 )  =  𝑥 ) | 
						
							| 27 | 26 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  ( 𝑥  ∪  𝑦 )  =  𝑥 ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  ( 𝐹 ‘ ( 𝑥  ∪  𝑦 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 29 | 24 28 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐹 ‘ 𝑦 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 30 |  | ssequn2 | ⊢ ( ( 𝐹 ‘ 𝑦 )  ⊆  ( 𝐹 ‘ 𝑥 )  ↔  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐹 ‘ 𝑦 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 31 | 29 30 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ⊆  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 32 | 1 2 3 31 4 | ismrcd1 | ⊢ ( 𝜑  →  dom  ( 𝐹  ∩   I  )  ∈  ( Moore ‘ 𝐵 ) ) | 
						
							| 33 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝐵 | 
						
							| 34 |  | fnelfp | ⊢ ( ( 𝐹  Fn  𝒫  𝐵  ∧  ∅  ∈  𝒫  𝐵 )  →  ( ∅  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ ∅ )  =  ∅ ) ) | 
						
							| 35 | 8 33 34 | sylancl | ⊢ ( 𝜑  →  ( ∅  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ ∅ )  =  ∅ ) ) | 
						
							| 36 | 5 35 | mpbird | ⊢ ( 𝜑  →  ∅  ∈  dom  ( 𝐹  ∩   I  ) ) | 
						
							| 37 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  𝜑 ) | 
						
							| 38 |  | inss1 | ⊢ ( 𝐹  ∩   I  )  ⊆  𝐹 | 
						
							| 39 |  | dmss | ⊢ ( ( 𝐹  ∩   I  )  ⊆  𝐹  →  dom  ( 𝐹  ∩   I  )  ⊆  dom  𝐹 ) | 
						
							| 40 | 38 39 | ax-mp | ⊢ dom  ( 𝐹  ∩   I  )  ⊆  dom  𝐹 | 
						
							| 41 | 40 2 | fssdm | ⊢ ( 𝜑  →  dom  ( 𝐹  ∩   I  )  ⊆  𝒫  𝐵 ) | 
						
							| 42 | 41 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  dom  ( 𝐹  ∩   I  )  ⊆  𝒫  𝐵 ) | 
						
							| 43 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  𝑥  ∈  dom  ( 𝐹  ∩   I  ) ) | 
						
							| 44 | 42 43 | sseldd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  𝑥  ∈  𝒫  𝐵 ) | 
						
							| 45 | 44 | elpwid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  𝑥  ⊆  𝐵 ) | 
						
							| 46 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  𝑦  ∈  dom  ( 𝐹  ∩   I  ) ) | 
						
							| 47 | 42 46 | sseldd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  𝑦  ∈  𝒫  𝐵 ) | 
						
							| 48 | 47 | elpwid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  𝑦  ⊆  𝐵 ) | 
						
							| 49 | 37 45 48 6 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  ( 𝐹 ‘ ( 𝑥  ∪  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 50 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  𝐹  Fn  𝒫  𝐵 ) | 
						
							| 51 |  | fnelfp | ⊢ ( ( 𝐹  Fn  𝒫  𝐵  ∧  𝑥  ∈  𝒫  𝐵 )  →  ( 𝑥  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ 𝑥 )  =  𝑥 ) ) | 
						
							| 52 | 50 44 51 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  ( 𝑥  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ 𝑥 )  =  𝑥 ) ) | 
						
							| 53 | 43 52 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  ( 𝐹 ‘ 𝑥 )  =  𝑥 ) | 
						
							| 54 |  | fnelfp | ⊢ ( ( 𝐹  Fn  𝒫  𝐵  ∧  𝑦  ∈  𝒫  𝐵 )  →  ( 𝑦  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) ) | 
						
							| 55 | 50 47 54 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  ( 𝑦  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) ) | 
						
							| 56 | 46 55 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) | 
						
							| 57 | 53 56 | uneq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑥  ∪  𝑦 ) ) | 
						
							| 58 | 49 57 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  ( 𝐹 ‘ ( 𝑥  ∪  𝑦 ) )  =  ( 𝑥  ∪  𝑦 ) ) | 
						
							| 59 | 45 48 | unssd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  ( 𝑥  ∪  𝑦 )  ⊆  𝐵 ) | 
						
							| 60 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 61 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 62 | 60 61 | unex | ⊢ ( 𝑥  ∪  𝑦 )  ∈  V | 
						
							| 63 | 62 | elpw | ⊢ ( ( 𝑥  ∪  𝑦 )  ∈  𝒫  𝐵  ↔  ( 𝑥  ∪  𝑦 )  ⊆  𝐵 ) | 
						
							| 64 | 59 63 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  ( 𝑥  ∪  𝑦 )  ∈  𝒫  𝐵 ) | 
						
							| 65 |  | fnelfp | ⊢ ( ( 𝐹  Fn  𝒫  𝐵  ∧  ( 𝑥  ∪  𝑦 )  ∈  𝒫  𝐵 )  →  ( ( 𝑥  ∪  𝑦 )  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ ( 𝑥  ∪  𝑦 ) )  =  ( 𝑥  ∪  𝑦 ) ) ) | 
						
							| 66 | 50 64 65 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  ( ( 𝑥  ∪  𝑦 )  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ ( 𝑥  ∪  𝑦 ) )  =  ( 𝑥  ∪  𝑦 ) ) ) | 
						
							| 67 | 58 66 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  ( 𝐹  ∩   I  )  ∧  𝑦  ∈  dom  ( 𝐹  ∩   I  ) )  →  ( 𝑥  ∪  𝑦 )  ∈  dom  ( 𝐹  ∩   I  ) ) | 
						
							| 68 |  | eqid | ⊢ { 𝑧  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) }  =  { 𝑧  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) } | 
						
							| 69 | 32 36 67 68 | mretopd | ⊢ ( 𝜑  →  ( { 𝑧  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) }  ∈  ( TopOn ‘ 𝐵 )  ∧  dom  ( 𝐹  ∩   I  )  =  ( Clsd ‘ { 𝑧  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) } ) ) ) | 
						
							| 70 | 69 | simpld | ⊢ ( 𝜑  →  { 𝑧  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) }  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 71 | 19 70 | eqeltrd | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 72 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝐵 )  →  𝐽  ∈  Top ) | 
						
							| 73 | 71 72 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 74 |  | eqid | ⊢ ( mrCls ‘ ( Clsd ‘ 𝐽 ) )  =  ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) | 
						
							| 75 | 74 | mrccls | ⊢ ( 𝐽  ∈  Top  →  ( cls ‘ 𝐽 )  =  ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 76 | 73 75 | syl | ⊢ ( 𝜑  →  ( cls ‘ 𝐽 )  =  ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 77 | 69 | simprd | ⊢ ( 𝜑  →  dom  ( 𝐹  ∩   I  )  =  ( Clsd ‘ { 𝑧  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) } ) ) | 
						
							| 78 | 19 | fveq2d | ⊢ ( 𝜑  →  ( Clsd ‘ 𝐽 )  =  ( Clsd ‘ { 𝑧  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) } ) ) | 
						
							| 79 | 77 78 | eqtr4d | ⊢ ( 𝜑  →  dom  ( 𝐹  ∩   I  )  =  ( Clsd ‘ 𝐽 ) ) | 
						
							| 80 | 79 | fveq2d | ⊢ ( 𝜑  →  ( mrCls ‘ dom  ( 𝐹  ∩   I  ) )  =  ( mrCls ‘ ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 81 | 76 80 | eqtr4d | ⊢ ( 𝜑  →  ( cls ‘ 𝐽 )  =  ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ) | 
						
							| 82 | 1 2 3 31 4 | ismrcd2 | ⊢ ( 𝜑  →  𝐹  =  ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ) | 
						
							| 83 | 81 82 | eqtr4d | ⊢ ( 𝜑  →  ( cls ‘ 𝐽 )  =  𝐹 ) | 
						
							| 84 | 71 83 | jca | ⊢ ( 𝜑  →  ( 𝐽  ∈  ( TopOn ‘ 𝐵 )  ∧  ( cls ‘ 𝐽 )  =  𝐹 ) ) |