Metamath Proof Explorer


Theorem ismrcd2

Description: Second half of ismrcd1 . (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses ismrcd.b ( 𝜑𝐵𝑉 )
ismrcd.f ( 𝜑𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
ismrcd.e ( ( 𝜑𝑥𝐵 ) → 𝑥 ⊆ ( 𝐹𝑥 ) )
ismrcd.m ( ( 𝜑𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) )
ismrcd.i ( ( 𝜑𝑥𝐵 ) → ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) )
Assertion ismrcd2 ( 𝜑𝐹 = ( mrCls ‘ dom ( 𝐹 ∩ I ) ) )

Proof

Step Hyp Ref Expression
1 ismrcd.b ( 𝜑𝐵𝑉 )
2 ismrcd.f ( 𝜑𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
3 ismrcd.e ( ( 𝜑𝑥𝐵 ) → 𝑥 ⊆ ( 𝐹𝑥 ) )
4 ismrcd.m ( ( 𝜑𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) )
5 ismrcd.i ( ( 𝜑𝑥𝐵 ) → ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) )
6 2 ffnd ( 𝜑𝐹 Fn 𝒫 𝐵 )
7 1 2 3 4 5 ismrcd1 ( 𝜑 → dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) )
8 eqid ( mrCls ‘ dom ( 𝐹 ∩ I ) ) = ( mrCls ‘ dom ( 𝐹 ∩ I ) )
9 8 mrcf ( dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) → ( mrCls ‘ dom ( 𝐹 ∩ I ) ) : 𝒫 𝐵 ⟶ dom ( 𝐹 ∩ I ) )
10 ffn ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) : 𝒫 𝐵 ⟶ dom ( 𝐹 ∩ I ) → ( mrCls ‘ dom ( 𝐹 ∩ I ) ) Fn 𝒫 𝐵 )
11 7 9 10 3syl ( 𝜑 → ( mrCls ‘ dom ( 𝐹 ∩ I ) ) Fn 𝒫 𝐵 )
12 7 8 mrcssvd ( 𝜑 → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 )
13 12 adantr ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 )
14 elpwi ( 𝑧 ∈ 𝒫 𝐵𝑧𝐵 )
15 8 mrcssid ( ( dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑧𝐵 ) → 𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) )
16 7 14 15 syl2an ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → 𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) )
17 4 3expib ( 𝜑 → ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ) )
18 17 alrimivv ( 𝜑 → ∀ 𝑦𝑥 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ) )
19 vex 𝑧 ∈ V
20 fvex ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ V
21 sseq1 ( 𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) → ( 𝑥𝐵 ↔ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ) )
22 21 adantl ( ( 𝑦 = 𝑧𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝑥𝐵 ↔ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ) )
23 sseq12 ( ( 𝑦 = 𝑧𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝑦𝑥𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) )
24 22 23 anbi12d ( ( 𝑦 = 𝑧𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( ( 𝑥𝐵𝑦𝑥 ) ↔ ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) )
25 fveq2 ( 𝑦 = 𝑧 → ( 𝐹𝑦 ) = ( 𝐹𝑧 ) )
26 fveq2 ( 𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) → ( 𝐹𝑥 ) = ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) )
27 sseq12 ( ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ ( 𝐹𝑥 ) = ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) → ( ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ↔ ( 𝐹𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) )
28 25 26 27 syl2an ( ( 𝑦 = 𝑧𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ↔ ( 𝐹𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) )
29 24 28 imbi12d ( ( 𝑦 = 𝑧𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ) ↔ ( ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝐹𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) ) )
30 29 spc2gv ( ( 𝑧 ∈ V ∧ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ V ) → ( ∀ 𝑦𝑥 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ) → ( ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝐹𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) ) )
31 19 20 30 mp2an ( ∀ 𝑦𝑥 ( ( 𝑥𝐵𝑦𝑥 ) → ( 𝐹𝑦 ) ⊆ ( 𝐹𝑥 ) ) → ( ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝐹𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) )
32 18 31 syl ( 𝜑 → ( ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝐹𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) )
33 32 adantr ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝐹𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) )
34 13 16 33 mp2and ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) )
35 8 mrccl ( ( dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑧𝐵 ) → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) )
36 7 14 35 syl2an ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) )
37 6 adantr ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → 𝐹 Fn 𝒫 𝐵 )
38 20 elpw ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ 𝒫 𝐵 ↔ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 )
39 12 38 sylibr ( 𝜑 → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ 𝒫 𝐵 )
40 39 adantr ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ 𝒫 𝐵 )
41 fnelfp ( ( 𝐹 Fn 𝒫 𝐵 ∧ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ 𝒫 𝐵 ) → ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) )
42 37 40 41 syl2anc ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) )
43 36 42 mpbid ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) )
44 34 43 sseqtrd ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹𝑧 ) ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) )
45 7 adantr ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) )
46 sseq1 ( 𝑥 = 𝑧 → ( 𝑥𝐵𝑧𝐵 ) )
47 46 anbi2d ( 𝑥 = 𝑧 → ( ( 𝜑𝑥𝐵 ) ↔ ( 𝜑𝑧𝐵 ) ) )
48 id ( 𝑥 = 𝑧𝑥 = 𝑧 )
49 fveq2 ( 𝑥 = 𝑧 → ( 𝐹𝑥 ) = ( 𝐹𝑧 ) )
50 48 49 sseq12d ( 𝑥 = 𝑧 → ( 𝑥 ⊆ ( 𝐹𝑥 ) ↔ 𝑧 ⊆ ( 𝐹𝑧 ) ) )
51 47 50 imbi12d ( 𝑥 = 𝑧 → ( ( ( 𝜑𝑥𝐵 ) → 𝑥 ⊆ ( 𝐹𝑥 ) ) ↔ ( ( 𝜑𝑧𝐵 ) → 𝑧 ⊆ ( 𝐹𝑧 ) ) ) )
52 51 3 chvarvv ( ( 𝜑𝑧𝐵 ) → 𝑧 ⊆ ( 𝐹𝑧 ) )
53 14 52 sylan2 ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → 𝑧 ⊆ ( 𝐹𝑧 ) )
54 2fveq3 ( 𝑥 = 𝑧 → ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹 ‘ ( 𝐹𝑧 ) ) )
55 54 49 eqeq12d ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ↔ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) )
56 47 55 imbi12d ( 𝑥 = 𝑧 → ( ( ( 𝜑𝑥𝐵 ) → ( 𝐹 ‘ ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) ) ↔ ( ( 𝜑𝑧𝐵 ) → ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) ) )
57 56 5 chvarvv ( ( 𝜑𝑧𝐵 ) → ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) )
58 14 57 sylan2 ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) )
59 2 ffvelrnda ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹𝑧 ) ∈ 𝒫 𝐵 )
60 fnelfp ( ( 𝐹 Fn 𝒫 𝐵 ∧ ( 𝐹𝑧 ) ∈ 𝒫 𝐵 ) → ( ( 𝐹𝑧 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) )
61 37 59 60 syl2anc ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( ( 𝐹𝑧 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) )
62 58 61 mpbird ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹𝑧 ) ∈ dom ( 𝐹 ∩ I ) )
63 8 mrcsscl ( ( dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑧 ⊆ ( 𝐹𝑧 ) ∧ ( 𝐹𝑧 ) ∈ dom ( 𝐹 ∩ I ) ) → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ ( 𝐹𝑧 ) )
64 45 53 62 63 syl3anc ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ ( 𝐹𝑧 ) )
65 44 64 eqssd ( ( 𝜑𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹𝑧 ) = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) )
66 6 11 65 eqfnfvd ( 𝜑𝐹 = ( mrCls ‘ dom ( 𝐹 ∩ I ) ) )