| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismrcd.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | ismrcd.f | ⊢ ( 𝜑  →  𝐹 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 3 |  | ismrcd.e | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  𝑥  ⊆  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 4 |  | ismrcd.m | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ⊆  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 5 |  | ismrcd.i | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 6 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝒫  𝐵 ) | 
						
							| 7 | 1 2 3 4 5 | ismrcd1 | ⊢ ( 𝜑  →  dom  ( 𝐹  ∩   I  )  ∈  ( Moore ‘ 𝐵 ) ) | 
						
							| 8 |  | eqid | ⊢ ( mrCls ‘ dom  ( 𝐹  ∩   I  ) )  =  ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) | 
						
							| 9 | 8 | mrcf | ⊢ ( dom  ( 𝐹  ∩   I  )  ∈  ( Moore ‘ 𝐵 )  →  ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) : 𝒫  𝐵 ⟶ dom  ( 𝐹  ∩   I  ) ) | 
						
							| 10 |  | ffn | ⊢ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) : 𝒫  𝐵 ⟶ dom  ( 𝐹  ∩   I  )  →  ( mrCls ‘ dom  ( 𝐹  ∩   I  ) )  Fn  𝒫  𝐵 ) | 
						
							| 11 | 7 9 10 | 3syl | ⊢ ( 𝜑  →  ( mrCls ‘ dom  ( 𝐹  ∩   I  ) )  Fn  𝒫  𝐵 ) | 
						
							| 12 | 7 8 | mrcssvd | ⊢ ( 𝜑  →  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  𝐵 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  𝐵 ) | 
						
							| 14 |  | elpwi | ⊢ ( 𝑧  ∈  𝒫  𝐵  →  𝑧  ⊆  𝐵 ) | 
						
							| 15 | 8 | mrcssid | ⊢ ( ( dom  ( 𝐹  ∩   I  )  ∈  ( Moore ‘ 𝐵 )  ∧  𝑧  ⊆  𝐵 )  →  𝑧  ⊆  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) | 
						
							| 16 | 7 14 15 | syl2an | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  𝑧  ⊆  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) | 
						
							| 17 | 4 | 3expib | ⊢ ( 𝜑  →  ( ( 𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ⊆  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 18 | 17 | alrimivv | ⊢ ( 𝜑  →  ∀ 𝑦 ∀ 𝑥 ( ( 𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ⊆  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 19 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 20 |  | fvex | ⊢ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ∈  V | 
						
							| 21 |  | sseq1 | ⊢ ( 𝑥  =  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  →  ( 𝑥  ⊆  𝐵  ↔  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  𝐵 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑦  =  𝑧  ∧  𝑥  =  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  →  ( 𝑥  ⊆  𝐵  ↔  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  𝐵 ) ) | 
						
							| 23 |  | sseq12 | ⊢ ( ( 𝑦  =  𝑧  ∧  𝑥  =  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  →  ( 𝑦  ⊆  𝑥  ↔  𝑧  ⊆  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) | 
						
							| 24 | 22 23 | anbi12d | ⊢ ( ( 𝑦  =  𝑧  ∧  𝑥  =  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  →  ( ( 𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  ↔  ( ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  𝐵  ∧  𝑧  ⊆  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑥  =  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) | 
						
							| 27 |  | sseq12 | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) )  →  ( ( 𝐹 ‘ 𝑦 )  ⊆  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑧 )  ⊆  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 28 | 25 26 27 | syl2an | ⊢ ( ( 𝑦  =  𝑧  ∧  𝑥  =  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  →  ( ( 𝐹 ‘ 𝑦 )  ⊆  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑧 )  ⊆  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 29 | 24 28 | imbi12d | ⊢ ( ( 𝑦  =  𝑧  ∧  𝑥  =  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  →  ( ( ( 𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ⊆  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  𝐵  ∧  𝑧  ⊆  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  →  ( 𝐹 ‘ 𝑧 )  ⊆  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 30 | 29 | spc2gv | ⊢ ( ( 𝑧  ∈  V  ∧  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ∈  V )  →  ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ⊆  ( 𝐹 ‘ 𝑥 ) )  →  ( ( ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  𝐵  ∧  𝑧  ⊆  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  →  ( 𝐹 ‘ 𝑧 )  ⊆  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 31 | 19 20 30 | mp2an | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ⊆  ( 𝐹 ‘ 𝑥 ) )  →  ( ( ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  𝐵  ∧  𝑧  ⊆  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  →  ( 𝐹 ‘ 𝑧 )  ⊆  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 32 | 18 31 | syl | ⊢ ( 𝜑  →  ( ( ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  𝐵  ∧  𝑧  ⊆  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  →  ( 𝐹 ‘ 𝑧 )  ⊆  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( ( ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  𝐵  ∧  𝑧  ⊆  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  →  ( 𝐹 ‘ 𝑧 )  ⊆  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 34 | 13 16 33 | mp2and | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( 𝐹 ‘ 𝑧 )  ⊆  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) | 
						
							| 35 | 8 | mrccl | ⊢ ( ( dom  ( 𝐹  ∩   I  )  ∈  ( Moore ‘ 𝐵 )  ∧  𝑧  ⊆  𝐵 )  →  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) ) | 
						
							| 36 | 7 14 35 | syl2an | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) ) | 
						
							| 37 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  𝐹  Fn  𝒫  𝐵 ) | 
						
							| 38 | 20 | elpw | ⊢ ( ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ∈  𝒫  𝐵  ↔  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  𝐵 ) | 
						
							| 39 | 12 38 | sylibr | ⊢ ( 𝜑  →  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ∈  𝒫  𝐵 ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ∈  𝒫  𝐵 ) | 
						
							| 41 |  | fnelfp | ⊢ ( ( 𝐹  Fn  𝒫  𝐵  ∧  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ∈  𝒫  𝐵 )  →  ( ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  =  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) | 
						
							| 42 | 37 40 41 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  =  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) ) | 
						
							| 43 | 36 42 | mpbid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( 𝐹 ‘ ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) )  =  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) | 
						
							| 44 | 34 43 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( 𝐹 ‘ 𝑧 )  ⊆  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) | 
						
							| 45 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  dom  ( 𝐹  ∩   I  )  ∈  ( Moore ‘ 𝐵 ) ) | 
						
							| 46 |  | sseq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ⊆  𝐵  ↔  𝑧  ⊆  𝐵 ) ) | 
						
							| 47 | 46 | anbi2d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ↔  ( 𝜑  ∧  𝑧  ⊆  𝐵 ) ) ) | 
						
							| 48 |  | id | ⊢ ( 𝑥  =  𝑧  →  𝑥  =  𝑧 ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 50 | 48 49 | sseq12d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ⊆  ( 𝐹 ‘ 𝑥 )  ↔  𝑧  ⊆  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 51 | 47 50 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  𝑥  ⊆  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  𝑧  ⊆  𝐵 )  →  𝑧  ⊆  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 52 | 51 3 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑧  ⊆  𝐵 )  →  𝑧  ⊆  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 53 | 14 52 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  𝑧  ⊆  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 54 |  | 2fveq3 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 55 | 54 49 | eqeq12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 56 | 47 55 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  𝑧  ⊆  𝐵 )  →  ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 57 | 56 5 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑧  ⊆  𝐵 )  →  ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 58 | 14 57 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 59 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝒫  𝐵 ) | 
						
							| 60 |  | fnelfp | ⊢ ( ( 𝐹  Fn  𝒫  𝐵  ∧  ( 𝐹 ‘ 𝑧 )  ∈  𝒫  𝐵 )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 61 | 37 59 60 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  dom  ( 𝐹  ∩   I  )  ↔  ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 62 | 58 61 | mpbird | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( 𝐹 ‘ 𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) ) | 
						
							| 63 | 8 | mrcsscl | ⊢ ( ( dom  ( 𝐹  ∩   I  )  ∈  ( Moore ‘ 𝐵 )  ∧  𝑧  ⊆  ( 𝐹 ‘ 𝑧 )  ∧  ( 𝐹 ‘ 𝑧 )  ∈  dom  ( 𝐹  ∩   I  ) )  →  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 64 | 45 53 62 63 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 )  ⊆  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 65 | 44 64 | eqssd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  𝐵 )  →  ( 𝐹 ‘ 𝑧 )  =  ( ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ‘ 𝑧 ) ) | 
						
							| 66 | 6 11 65 | eqfnfvd | ⊢ ( 𝜑  →  𝐹  =  ( mrCls ‘ dom  ( 𝐹  ∩   I  ) ) ) |