Step |
Hyp |
Ref |
Expression |
1 |
|
ismrcd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
2 |
|
ismrcd.f |
⊢ ( 𝜑 → 𝐹 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
3 |
|
ismrcd.e |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 ⊆ ( 𝐹 ‘ 𝑥 ) ) |
4 |
|
ismrcd.m |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
5 |
|
ismrcd.i |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
6 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝒫 𝐵 ) |
7 |
1 2 3 4 5
|
ismrcd1 |
⊢ ( 𝜑 → dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) ) |
8 |
|
eqid |
⊢ ( mrCls ‘ dom ( 𝐹 ∩ I ) ) = ( mrCls ‘ dom ( 𝐹 ∩ I ) ) |
9 |
8
|
mrcf |
⊢ ( dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) → ( mrCls ‘ dom ( 𝐹 ∩ I ) ) : 𝒫 𝐵 ⟶ dom ( 𝐹 ∩ I ) ) |
10 |
|
ffn |
⊢ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) : 𝒫 𝐵 ⟶ dom ( 𝐹 ∩ I ) → ( mrCls ‘ dom ( 𝐹 ∩ I ) ) Fn 𝒫 𝐵 ) |
11 |
7 9 10
|
3syl |
⊢ ( 𝜑 → ( mrCls ‘ dom ( 𝐹 ∩ I ) ) Fn 𝒫 𝐵 ) |
12 |
7 8
|
mrcssvd |
⊢ ( 𝜑 → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ) |
14 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 𝐵 → 𝑧 ⊆ 𝐵 ) |
15 |
8
|
mrcssid |
⊢ ( ( dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑧 ⊆ 𝐵 ) → 𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) |
16 |
7 14 15
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → 𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) |
17 |
4
|
3expib |
⊢ ( 𝜑 → ( ( 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ) |
18 |
17
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑦 ∀ 𝑥 ( ( 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ) |
19 |
|
vex |
⊢ 𝑧 ∈ V |
20 |
|
fvex |
⊢ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ V |
21 |
|
sseq1 |
⊢ ( 𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) → ( 𝑥 ⊆ 𝐵 ↔ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝑥 ⊆ 𝐵 ↔ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ) ) |
23 |
|
sseq12 |
⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝑦 ⊆ 𝑥 ↔ 𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) |
24 |
22 23
|
anbi12d |
⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( ( 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) ↔ ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ∧ 𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
26 |
|
fveq2 |
⊢ ( 𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) |
27 |
|
sseq12 |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) ) |
28 |
25 26 27
|
syl2an |
⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) ) |
29 |
24 28
|
imbi12d |
⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( ( ( 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ∧ 𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) ) ) |
30 |
29
|
spc2gv |
⊢ ( ( 𝑧 ∈ V ∧ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ V ) → ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ∧ 𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) ) ) |
31 |
19 20 30
|
mp2an |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ∧ 𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) ) |
32 |
18 31
|
syl |
⊢ ( 𝜑 → ( ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ∧ 𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ∧ 𝑧 ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) ) |
34 |
13 16 33
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) |
35 |
8
|
mrccl |
⊢ ( ( dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑧 ⊆ 𝐵 ) → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ) |
36 |
7 14 35
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ) |
37 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → 𝐹 Fn 𝒫 𝐵 ) |
38 |
20
|
elpw |
⊢ ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ 𝒫 𝐵 ↔ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ 𝐵 ) |
39 |
12 38
|
sylibr |
⊢ ( 𝜑 → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ 𝒫 𝐵 ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ 𝒫 𝐵 ) |
41 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝒫 𝐵 ∧ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ 𝒫 𝐵 ) → ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) |
42 |
37 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) ) |
43 |
36 42
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹 ‘ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) |
44 |
34 43
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ⊆ ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) |
45 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) ) |
46 |
|
sseq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ⊆ 𝐵 ↔ 𝑧 ⊆ 𝐵 ) ) |
47 |
46
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ↔ ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ) ) |
48 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
49 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
50 |
48 49
|
sseq12d |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ⊆ ( 𝐹 ‘ 𝑥 ) ↔ 𝑧 ⊆ ( 𝐹 ‘ 𝑧 ) ) ) |
51 |
47 50
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 ⊆ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → 𝑧 ⊆ ( 𝐹 ‘ 𝑧 ) ) ) ) |
52 |
51 3
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → 𝑧 ⊆ ( 𝐹 ‘ 𝑧 ) ) |
53 |
14 52
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → 𝑧 ⊆ ( 𝐹 ‘ 𝑧 ) ) |
54 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
55 |
54 49
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) ) |
56 |
47 55
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) ) ) |
57 |
56 5
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
58 |
14 57
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
59 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝒫 𝐵 ) |
60 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝒫 𝐵 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝒫 𝐵 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) ) |
61 |
37 59 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) ) |
62 |
58 61
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ) |
63 |
8
|
mrcsscl |
⊢ ( ( dom ( 𝐹 ∩ I ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑧 ⊆ ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ dom ( 𝐹 ∩ I ) ) → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑧 ) ) |
64 |
45 53 62 63
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑧 ) ) |
65 |
44 64
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 𝐵 ) → ( 𝐹 ‘ 𝑧 ) = ( ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ‘ 𝑧 ) ) |
66 |
6 11 65
|
eqfnfvd |
⊢ ( 𝜑 → 𝐹 = ( mrCls ‘ dom ( 𝐹 ∩ I ) ) ) |