Metamath Proof Explorer


Theorem ismrcd2

Description: Second half of ismrcd1 . (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses ismrcd.b φ B V
ismrcd.f φ F : 𝒫 B 𝒫 B
ismrcd.e φ x B x F x
ismrcd.m φ x B y x F y F x
ismrcd.i φ x B F F x = F x
Assertion ismrcd2 φ F = mrCls dom F I

Proof

Step Hyp Ref Expression
1 ismrcd.b φ B V
2 ismrcd.f φ F : 𝒫 B 𝒫 B
3 ismrcd.e φ x B x F x
4 ismrcd.m φ x B y x F y F x
5 ismrcd.i φ x B F F x = F x
6 2 ffnd φ F Fn 𝒫 B
7 1 2 3 4 5 ismrcd1 φ dom F I Moore B
8 eqid mrCls dom F I = mrCls dom F I
9 8 mrcf dom F I Moore B mrCls dom F I : 𝒫 B dom F I
10 ffn mrCls dom F I : 𝒫 B dom F I mrCls dom F I Fn 𝒫 B
11 7 9 10 3syl φ mrCls dom F I Fn 𝒫 B
12 7 8 mrcssvd φ mrCls dom F I z B
13 12 adantr φ z 𝒫 B mrCls dom F I z B
14 elpwi z 𝒫 B z B
15 8 mrcssid dom F I Moore B z B z mrCls dom F I z
16 7 14 15 syl2an φ z 𝒫 B z mrCls dom F I z
17 4 3expib φ x B y x F y F x
18 17 alrimivv φ y x x B y x F y F x
19 vex z V
20 fvex mrCls dom F I z V
21 sseq1 x = mrCls dom F I z x B mrCls dom F I z B
22 21 adantl y = z x = mrCls dom F I z x B mrCls dom F I z B
23 sseq12 y = z x = mrCls dom F I z y x z mrCls dom F I z
24 22 23 anbi12d y = z x = mrCls dom F I z x B y x mrCls dom F I z B z mrCls dom F I z
25 fveq2 y = z F y = F z
26 fveq2 x = mrCls dom F I z F x = F mrCls dom F I z
27 sseq12 F y = F z F x = F mrCls dom F I z F y F x F z F mrCls dom F I z
28 25 26 27 syl2an y = z x = mrCls dom F I z F y F x F z F mrCls dom F I z
29 24 28 imbi12d y = z x = mrCls dom F I z x B y x F y F x mrCls dom F I z B z mrCls dom F I z F z F mrCls dom F I z
30 29 spc2gv z V mrCls dom F I z V y x x B y x F y F x mrCls dom F I z B z mrCls dom F I z F z F mrCls dom F I z
31 19 20 30 mp2an y x x B y x F y F x mrCls dom F I z B z mrCls dom F I z F z F mrCls dom F I z
32 18 31 syl φ mrCls dom F I z B z mrCls dom F I z F z F mrCls dom F I z
33 32 adantr φ z 𝒫 B mrCls dom F I z B z mrCls dom F I z F z F mrCls dom F I z
34 13 16 33 mp2and φ z 𝒫 B F z F mrCls dom F I z
35 8 mrccl dom F I Moore B z B mrCls dom F I z dom F I
36 7 14 35 syl2an φ z 𝒫 B mrCls dom F I z dom F I
37 6 adantr φ z 𝒫 B F Fn 𝒫 B
38 20 elpw mrCls dom F I z 𝒫 B mrCls dom F I z B
39 12 38 sylibr φ mrCls dom F I z 𝒫 B
40 39 adantr φ z 𝒫 B mrCls dom F I z 𝒫 B
41 fnelfp F Fn 𝒫 B mrCls dom F I z 𝒫 B mrCls dom F I z dom F I F mrCls dom F I z = mrCls dom F I z
42 37 40 41 syl2anc φ z 𝒫 B mrCls dom F I z dom F I F mrCls dom F I z = mrCls dom F I z
43 36 42 mpbid φ z 𝒫 B F mrCls dom F I z = mrCls dom F I z
44 34 43 sseqtrd φ z 𝒫 B F z mrCls dom F I z
45 7 adantr φ z 𝒫 B dom F I Moore B
46 sseq1 x = z x B z B
47 46 anbi2d x = z φ x B φ z B
48 id x = z x = z
49 fveq2 x = z F x = F z
50 48 49 sseq12d x = z x F x z F z
51 47 50 imbi12d x = z φ x B x F x φ z B z F z
52 51 3 chvarvv φ z B z F z
53 14 52 sylan2 φ z 𝒫 B z F z
54 2fveq3 x = z F F x = F F z
55 54 49 eqeq12d x = z F F x = F x F F z = F z
56 47 55 imbi12d x = z φ x B F F x = F x φ z B F F z = F z
57 56 5 chvarvv φ z B F F z = F z
58 14 57 sylan2 φ z 𝒫 B F F z = F z
59 2 ffvelrnda φ z 𝒫 B F z 𝒫 B
60 fnelfp F Fn 𝒫 B F z 𝒫 B F z dom F I F F z = F z
61 37 59 60 syl2anc φ z 𝒫 B F z dom F I F F z = F z
62 58 61 mpbird φ z 𝒫 B F z dom F I
63 8 mrcsscl dom F I Moore B z F z F z dom F I mrCls dom F I z F z
64 45 53 62 63 syl3anc φ z 𝒫 B mrCls dom F I z F z
65 44 64 eqssd φ z 𝒫 B F z = mrCls dom F I z
66 6 11 65 eqfnfvd φ F = mrCls dom F I